96,798 research outputs found
Hypergraphic LP Relaxations for Steiner Trees
We investigate hypergraphic LP relaxations for the Steiner tree problem,
primarily the partition LP relaxation introduced by Koenemann et al. [Math.
Programming, 2009]. Specifically, we are interested in proving upper bounds on
the integrality gap of this LP, and studying its relation to other linear
relaxations. Our results are the following. Structural results: We extend the
technique of uncrossing, usually applied to families of sets, to families of
partitions. As a consequence we show that any basic feasible solution to the
partition LP formulation has sparse support. Although the number of variables
could be exponential, the number of positive variables is at most the number of
terminals. Relations with other relaxations: We show the equivalence of the
partition LP relaxation with other known hypergraphic relaxations. We also show
that these hypergraphic relaxations are equivalent to the well studied
bidirected cut relaxation, if the instance is quasibipartite. Integrality gap
upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap
of these hypergraph relaxations in general graphs. In the special case of
uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~
1.216. By our equivalence theorem, the latter result implies an improved upper
bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010
A Compact Linear Programming Relaxation for Binary Sub-modular MRF
We propose a novel compact linear programming (LP) relaxation for binary
sub-modular MRF in the context of object segmentation. Our model is obtained by
linearizing an -norm derived from the quadratic programming (QP) form of
the MRF energy. The resultant LP model contains significantly fewer variables
and constraints compared to the conventional LP relaxation of the MRF energy.
In addition, unlike QP which can produce ambiguous labels, our model can be
viewed as a quasi-total-variation minimization problem, and it can therefore
preserve the discontinuities in the labels. We further establish a relaxation
bound between our LP model and the conventional LP model. In the experiments,
we demonstrate our method for the task of interactive object segmentation. Our
LP model outperforms QP when converting the continuous labels to binary labels
using different threshold values on the entire Oxford interactive segmentation
dataset. The computational complexity of our LP is of the same order as that of
the QP, and it is significantly lower than the conventional LP relaxation
Lift & Project Systems Performing on the Partial-Vertex-Cover Polytope
We study integrality gap (IG) lower bounds on strong LP and SDP relaxations
derived by the Sherali-Adams (SA), Lovasz-Schrijver-SDP (LS+), and
Sherali-Adams-SDP (SA+) lift-and-project (L&P) systems for the
t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-Cover
problem in which only t edges need to be covered. t-PVC admits a
2-approximation using various algorithmic techniques, all relying on a natural
LP relaxation. Starting from this LP relaxation, our main results assert that
for every epsilon > 0, level-Theta(n) LPs or SDPs derived by all known L&P
systems that have been used for positive algorithmic results (but the Lasserre
hierarchy) have IGs at least (1-epsilon)n/t, where n is the number of vertices
of the input graph. Our lower bounds are nearly tight.
Our results show that restricted yet powerful models of computation derived
by many L&P systems fail to witness c-approximate solutions to t-PVC for any
constant c, and for t = O(n). This is one of the very few known examples of an
intractable combinatorial optimization problem for which LP-based algorithms
induce a constant approximation ratio, still lift-and-project LP and SDP
tightenings of the same LP have unbounded IGs.
We also show that the SDP that has given the best algorithm known for t-PVC
has integrality gap n/t on instances that can be solved by the level-1 LP
relaxation derived by the LS system. This constitutes another rare phenomenon
where (even in specific instances) a static LP outperforms an SDP that has been
used for the best approximation guarantee for the problem at hand. Finally, one
of our main contributions is that we make explicit of a new and simple
methodology of constructing solutions to LP relaxations that almost trivially
satisfy constraints derived by all SDP L&P systems known to be useful for
algorithmic positive results (except the La system).Comment: 26 page
- …
