96,798 research outputs found

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    A Compact Linear Programming Relaxation for Binary Sub-modular MRF

    Full text link
    We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an l1+l_1^+-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation

    Lift & Project Systems Performing on the Partial-Vertex-Cover Polytope

    Full text link
    We study integrality gap (IG) lower bounds on strong LP and SDP relaxations derived by the Sherali-Adams (SA), Lovasz-Schrijver-SDP (LS+), and Sherali-Adams-SDP (SA+) lift-and-project (L&P) systems for the t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-Cover problem in which only t edges need to be covered. t-PVC admits a 2-approximation using various algorithmic techniques, all relying on a natural LP relaxation. Starting from this LP relaxation, our main results assert that for every epsilon > 0, level-Theta(n) LPs or SDPs derived by all known L&P systems that have been used for positive algorithmic results (but the Lasserre hierarchy) have IGs at least (1-epsilon)n/t, where n is the number of vertices of the input graph. Our lower bounds are nearly tight. Our results show that restricted yet powerful models of computation derived by many L&P systems fail to witness c-approximate solutions to t-PVC for any constant c, and for t = O(n). This is one of the very few known examples of an intractable combinatorial optimization problem for which LP-based algorithms induce a constant approximation ratio, still lift-and-project LP and SDP tightenings of the same LP have unbounded IGs. We also show that the SDP that has given the best algorithm known for t-PVC has integrality gap n/t on instances that can be solved by the level-1 LP relaxation derived by the LS system. This constitutes another rare phenomenon where (even in specific instances) a static LP outperforms an SDP that has been used for the best approximation guarantee for the problem at hand. Finally, one of our main contributions is that we make explicit of a new and simple methodology of constructing solutions to LP relaxations that almost trivially satisfy constraints derived by all SDP L&P systems known to be useful for algorithmic positive results (except the La system).Comment: 26 page
    corecore