1,231,030 research outputs found

    Semiclassical Lp estimates

    Full text link
    The purpose of this paper is to use semiclassical analysis to unify and generalize Lp estimates on high energy eigenfunctions and spectral clusters. In our approach these estimates do not depend on ellipticity and order, and apply to operators which are selfadjoint only at the principal level. They are estimates on weakly approximate solutions to semiclassical pseudodifferential equations. The revision corrects an exponent in the main theorems.Comment: 33 pages, 1 figur

    Adaptive Linear Programming Decoding of Polar Codes

    Full text link
    Polar codes are high density parity check codes and hence the sparse factor graph, instead of the parity check matrix, has been used to practically represent an LP polytope for LP decoding. Although LP decoding on this polytope has the ML-certificate property, it performs poorly over a BAWGN channel. In this paper, we propose modifications to adaptive cut generation based LP decoding techniques and apply the modified-adaptive LP decoder to short blocklength polar codes over a BAWGN channel. The proposed decoder provides significant FER performance gain compared to the previously proposed LP decoder and its performance approaches that of ML decoding at high SNRs. We also present an algorithm to obtain a smaller factor graph from the original sparse factor graph of a polar code. This reduced factor graph preserves the small check node degrees needed to represent the LP polytope in practice. We show that the fundamental polytope of the reduced factor graph can be obtained from the projection of the polytope represented by the original sparse factor graph and the frozen bit information. Thus, the LP decoding time complexity is decreased without changing the FER performance by using the reduced factor graph representation.Comment: 5 pages, 8 figures, to be presented at the IEEE Symposium on Information Theory (ISIT) 201

    Cluster of legionnaires’ disease in an Italian prison

    Get PDF
    Background: Legionella pneumophila (Lp) is the most common etiologic agent causing Legionnaires’ Disease (LD). Water systems offer the best growth conditions for Lp and support its spread by producing aerosols. From 2015 to 2017, the Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis of Palermo monitored the presence of Lp in nine prisons in Western Sicily. During this investigation, we compared Lp isolates from environmental samples in a prison located in Palermo with isolates from two prisoners in the same prison. Methods: We collected 93 water samples from nine Sicilian prisons and the bronchoalveolar lavages (BALs) of two prisoners considered cases of LD. These samples were processed following the procedures described in the Italian Guidelines for the Prevention and Control of Legionellosis of 2015. Then, genotyping was performed on 19 Lp colonies (17 from water samples and 2 from clinical samples) using the Sequence-Based Typing (SBT) method, according to European Study Group for Legionella Infections (ESGLI) protocols. Results: Lp serogroup (sg) 6 was the most prevalent serogroup isolated from the prisons analyzed (40%), followed by Lp sg 1 (16%). Most of all, in four penitentiary institutions, we detected a high concentration of Lp >104 Colony Forming Unit/Liter (CFU/L). The environmental molecular investigation found the following Sequence Types (STs) in Lp sg 6: ST 93, ST 292, ST 461, ST 728, ST 1317 and ST 1362, while most of the isolates in sg 1 belonged to ST 1. We also found a new ST that has since been assigned the number 2451 in the ESGLI-SBT database. From the several Lp sg 1 colonies isolated from the two BALs, we identified ST 2451. Conclusions: In this article, we described the results obtained from environmental and epidemiological investigations of Lp isolated from prisons in Western Sicily. Furthermore, we reported the first cluster of Legionnaires’ in an Italian prison and the molecular typing of Lp sg 1 from one prison’s water system and two BALs, identified the source of the contamination, and discovered a new ST
    corecore