147,070 research outputs found

    Semantic keyword search for expert witness discovery

    No full text
    In the last few years, there has been an increase in the amount of information stored in semantically enriched knowledge bases, represented in RDF format. These improve the accuracy of search results when the queries are semantically formal. However framing such queries is inappropriate for inexperience users because they require specialist knowledge of ontology and syntax. In this paper, we explore an approach that automates the process of converting a conventional keyword search into a semantically formal query in order to find an expert on a semantically enriched knowledge base. A case study on expert witness discovery for the resolution of a legal dispute is chosen as the domain of interest and a system named SKengine is implemented to illustrate the approach. As well as providing an easy user interface, our experiment shows that SKengine can retrieve expert witness information with higher precision and higher recall, compared with the other system, with the same interface, implemented by a vector model approach

    A Robust Zero-point Attraction LMS Algorithm on Near Sparse System Identification

    Full text link
    The newly proposed l1l_1 norm constraint zero-point attraction Least Mean Square algorithm (ZA-LMS) demonstrates excellent performance on exact sparse system identification. However, ZA-LMS has less advantage against standard LMS when the system is near sparse. Thus, in this paper, firstly the near sparse system modeling by Generalized Gaussian Distribution is recommended, where the sparsity is defined accordingly. Secondly, two modifications to the ZA-LMS algorithm have been made. The l1l_1 norm penalty is replaced by a partial l1l_1 norm in the cost function, enhancing robustness without increasing the computational complexity. Moreover, the zero-point attraction item is weighted by the magnitude of estimation error which adjusts the zero-point attraction force dynamically. By combining the two improvements, Dynamic Windowing ZA-LMS (DWZA-LMS) algorithm is further proposed, which shows better performance on near sparse system identification. In addition, the mean square performance of DWZA-LMS algorithm is analyzed. Finally, computer simulations demonstrate the effectiveness of the proposed algorithm and verify the result of theoretical analysis.Comment: 20 pages, 11 figure

    Learning neural trans-dimensional random field language models with noise-contrastive estimation

    Full text link
    Trans-dimensional random field language models (TRF LMs) where sentences are modeled as a collection of random fields, have shown close performance with LSTM LMs in speech recognition and are computationally more efficient in inference. However, the training efficiency of neural TRF LMs is not satisfactory, which limits the scalability of TRF LMs on large training corpus. In this paper, several techniques on both model formulation and parameter estimation are proposed to improve the training efficiency and the performance of neural TRF LMs. First, TRFs are reformulated in the form of exponential tilting of a reference distribution. Second, noise-contrastive estimation (NCE) is introduced to jointly estimate the model parameters and normalization constants. Third, we extend the neural TRF LMs by marrying the deep convolutional neural network (CNN) and the bidirectional LSTM into the potential function to extract the deep hierarchical features and bidirectionally sequential features. Utilizing all the above techniques enables the successful and efficient training of neural TRF LMs on a 40x larger training set with only 1/3 training time and further reduces the WER with relative reduction of 4.7% on top of a strong LSTM LM baseline.Comment: 5 pages and 2 figure
    corecore