78,733 research outputs found

    Implications of partially degenerate neutrinos at a high scale in the light of KamLAND and WMAP

    Full text link
    Electroweak radiative corrections can generate the neutrino (mass)2^2 difference required for the large mixing angle solution (LMA) to the solar neutrino problem if two of the neutrinos are assumed degenerate at high energy. We test this possibility with the existing experimental knowledge of the low energy neutrino mass and mixing parameters. We derive restrictions on ranges of the high scale mixing matrix elements and obtain predictions for the low energy parameters required in order to get the LMA solution of the solar neutrino problem picked out by KamLAND. We find that in the case of standard model this is achieved only when the (degenerate) neutrino masses lie in the range (0.7-2) \eV which is at odds with the cosmological limit m_{\nu}<0.23 \eV (at 9595 % C.L) established recently using WMAP results. Thus SM radiative corrections cannot easily generate the LMA solution in this scenario. However, the LMA solution is possible in case of the MSSM electroweak corrections with (almost) degenerate spectrum or with inverted mass hierarchy for limited ranges in the high scale parameters.Comment: 15 pages, LATEX includes five postscript figure

    Which solar neutrino data favour the LMA solution?

    Full text link
    Assuming neutrino oscillations, global analyses of solar data find that the LOW solution is significantly disfavoured, leaving LMA as the best solution. But the preference for LMA rests on three weak hints: the spectrum of earth matter effects (Super-Kamiokande sees an overall day/night asymmetry only at 1 sigma), the Cl rate (but LMA and LOW predictions are both above the measured value), the Ga rate (newer data decrease towards the LOW predictions both in GNO and SAGE). Only new data will tell us if LMA is the true solution.Comment: 4 pages, 2 figure

    Probing long-range leptonic forces with solar and reactor neutrinos

    Get PDF
    In this work we study the phenomenological consequences of the existence of long-range forces coupled to lepton flavour numbers in solar neutrino oscillations. We study electronic forces mediated by scalar, vector or tensor neutral bosons and analyze their effect on the propagation of solar neutrinos as a function of the force strength and range. Under the assumption of one mass scale dominance, we perform a global analysis of solar and KamLAND neutrino data which depends on the two standard oscillation parameters, \Delta m^2_{21} and \tan^2\theta_{12}, the force coupling constant, its range and, for the case of scalar-mediated interactions, on the neutrino mass scale as well. We find that, generically, the inclusion of the new interaction does not lead to a very statistically significant improvement on the description of the data in the most favored MSW LMA (or LMA-I) region. It does, however, substantially improve the fit in the high-\Delta m^2 LMA (or LMA-II) region which can be allowed for vector and scalar lepto-forces (in this last case if neutrinos are very hierarchical) at 2.5\sigma. Conversely, the analysis allows us to place stringent constraints on the strength versus range of the leptonic interaction.Comment: 20 pages, 8 figure

    Local moment approach to multi-orbital Anderson and Hubbard models

    Full text link
    The variational local moment approach (V-LMA), being a modification of the method due to Logan {\it et al}., is presented here. The existence of local moments is taken from the outset and their values are determined through variational principle by minimizing the corresponding ground state energy. Our variational procedure allows us to treat both fermi- and non-fermi liquid systems with many orbitals as well as insulators without any additional assumptions. It is proved by an explicit construction of the corresponding Ward functional that the V-LMA belongs to the class of conserving approximations. As an illustration, the V-LMA is used to solve the multi-orbital single impurity Anderson model. The method is also applied to solve the dynamical mean-field equations for the multi-orbital Hubbard model. In particular, the Mott-Hubbard metal--insulator transition is addressed within this approach.Comment: 11 page

    Constraints on Weakly Mixed Sterile Neutrinos in the Light of SNO Salt Phase and 766.3 Ty KamLAND Data

    Full text link
    The possibility of flavor transitions into sterile neutrinos (accompanying the dominant LMA transitions) in the solar boron neutrino flux has been examined in a scenario proposed by Hollanda and Smirnov to overcome some generic problems of the pure LMA scenario. It is found that the most recent SNO salt phase solar neutrino data and the KamLAND 766.3 Ty spectral data, allow for a significant sterile presence in the solar boron neutrino flux reaching the earth.Comment: 12 pages, 4 figure

    First data of the Colombia Lightning Mapping Array - COLMA

    Get PDF
    The first data set of VHF lightning mapping using a Lightning Mapping Array system - LMA in a tropical region is presented in this paper. Six sensors were installed at the north of Colombia near Santa Marta city. Since the installation of the LMA network in 2015, up to 7000 intra-cloud (IC) discharges from September to November 2015 have been analyzed. The data suggests that, the electrical charge distribution in tropical thunderstorms shows higher vertical development reaching higher altitudesPreprin
    corecore