50 research outputs found

    Metaheuristic Algorithms for Convolution Neural Network

    Get PDF
    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).Comment: Article ID 1537325, 13 pages. Received 29 January 2016; Revised 15 April 2016; Accepted 10 May 2016. Academic Editor: Martin Hagan. in Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016

    Training Neural Networks with Stochastic Hessian-Free Optimization

    Full text link
    Hessian-free (HF) optimization has been successfully used for training deep autoencoders and recurrent networks. HF uses the conjugate gradient algorithm to construct update directions through curvature-vector products that can be computed on the same order of time as gradients. In this paper we exploit this property and study stochastic HF with gradient and curvature mini-batches independent of the dataset size. We modify Martens' HF for these settings and integrate dropout, a method for preventing co-adaptation of feature detectors, to guard against overfitting. Stochastic Hessian-free optimization gives an intermediary between SGD and HF that achieves competitive performance on both classification and deep autoencoder experiments.Comment: 11 pages, ICLR 201
    corecore