12,685 research outputs found

    Decomposition of Nonlinear Dynamical Systems Using Koopman Gramians

    Full text link
    In this paper we propose a new Koopman operator approach to the decomposition of nonlinear dynamical systems using Koopman Gramians. We introduce the notion of an input-Koopman operator, and show how input-Koopman operators can be used to cast a nonlinear system into the classical state-space form, and identify conditions under which input and state observable functions are well separated. We then extend an existing method of dynamic mode decomposition for learning Koopman operators from data known as deep dynamic mode decomposition to systems with controls or disturbances. We illustrate the accuracy of the method in learning an input-state separable Koopman operator for an example system, even when the underlying system exhibits mixed state-input terms. We next introduce a nonlinear decomposition algorithm, based on Koopman Gramians, that maximizes internal subsystem observability and disturbance rejection from unwanted noise from other subsystems. We derive a relaxation based on Koopman Gramians and multi-way partitioning for the resulting NP-hard decomposition problem. We lastly illustrate the proposed algorithm with the swing dynamics for an IEEE 39-bus system.Comment: 8 pages, submitted to IEEE 2018 AC

    Model-Based Control Using Koopman Operators

    Full text link
    This paper explores the application of Koopman operator theory to the control of robotic systems. The operator is introduced as a method to generate data-driven models that have utility for model-based control methods. We then motivate the use of the Koopman operator towards augmenting model-based control. Specifically, we illustrate how the operator can be used to obtain a linearizable data-driven model for an unknown dynamical process that is useful for model-based control synthesis. Simulated results show that with increasing complexity in the choice of the basis functions, a closed-loop controller is able to invert and stabilize a cart- and VTOL-pendulum systems. Furthermore, the specification of the basis function are shown to be of importance when generating a Koopman operator for specific robotic systems. Experimental results with the Sphero SPRK robot explore the utility of the Koopman operator in a reduced state representation setting where increased complexity in the basis function improve open- and closed-loop controller performance in various terrains, including sand.Comment: 8 page

    Koopman Operator and its Approximations for Systems with Symmetries

    Get PDF
    Nonlinear dynamical systems with symmetries exhibit a rich variety of behaviors, including complex attractor-basin portraits and enhanced and suppressed bifurcations. Symmetry arguments provide a way to study these collective behaviors and to simplify their analysis. The Koopman operator is an infinite dimensional linear operator that fully captures a system's nonlinear dynamics through the linear evolution of functions of the state space. Importantly, in contrast with local linearization, it preserves a system's global nonlinear features. We demonstrate how the presence of symmetries affects the Koopman operator structure and its spectral properties. In fact, we show that symmetry considerations can also simplify finding the Koopman operator approximations using the extended and kernel dynamic mode decomposition methods (EDMD and kernel DMD). Specifically, representation theory allows us to demonstrate that an isotypic component basis induces block diagonal structure in operator approximations, revealing hidden organization. Practically, if the data is symmetric, the EDMD and kernel DMD methods can be modified to give more efficient computation of the Koopman operator approximation and its eigenvalues, eigenfunctions, and eigenmodes. Rounding out the development, we discuss the effect of measurement noise

    On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator

    Full text link
    Extended Dynamic Mode Decomposition (EDMD) is an algorithm that approximates the action of the Koopman operator on an NN-dimensional subspace of the space of observables by sampling at MM points in the state space. Assuming that the samples are drawn either independently or ergodically from some measure μ\mu, it was shown that, in the limit as MM\rightarrow\infty, the EDMD operator KN,M\mathcal{K}_{N,M} converges to KN\mathcal{K}_N, where KN\mathcal{K}_N is the L2(μ)L_2(\mu)-orthogonal projection of the action of the Koopman operator on the finite-dimensional subspace of observables. In this work, we show that, as NN \rightarrow \infty, the operator KN\mathcal{K}_N converges in the strong operator topology to the Koopman operator. This in particular implies convergence of the predictions of future values of a given observable over any finite time horizon, a fact important for practical applications such as forecasting, estimation and control. In addition, we show that accumulation points of the spectra of KN\mathcal{K}_N correspond to the eigenvalues of the Koopman operator with the associated eigenfunctions converging weakly to an eigenfunction of the Koopman operator, provided that the weak limit of eigenfunctions is nonzero. As a by-product, we propose an analytic version of the EDMD algorithm which, under some assumptions, allows one to construct KN\mathcal{K}_N directly, without the use of sampling. Finally, under additional assumptions, we analyze convergence of KN,N\mathcal{K}_{N,N} (i.e., M=NM=N), proving convergence, along a subsequence, to weak eigenfunctions (or eigendistributions) related to the eigenmeasures of the Perron-Frobenius operator. No assumptions on the observables belonging to a finite-dimensional invariant subspace of the Koopman operator are required throughout

    A Class of Logistic Functions for Approximating State-Inclusive Koopman Operators

    Full text link
    An outstanding challenge in nonlinear systems theory is identification or learning of a given nonlinear system's Koopman operator directly from data or models. Advances in extended dynamic mode decomposition approaches and machine learning methods have enabled data-driven discovery of Koopman operators, for both continuous and discrete-time systems. Since Koopman operators are often infinite-dimensional, they are approximated in practice using finite-dimensional systems. The fidelity and convergence of a given finite-dimensional Koopman approximation is a subject of ongoing research. In this paper we introduce a class of Koopman observable functions that confer an approximate closure property on their corresponding finite-dimensional approximations of the Koopman operator. We derive error bounds for the fidelity of this class of observable functions, as well as identify two key learning parameters which can be used to tune performance. We illustrate our approach on two classical nonlinear system models: the Van Der Pol oscillator and the bistable toggle switch.Comment: 8 page

    A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

    Full text link
    The Koopman operator is a linear but infinite dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system, and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a "black box" integrator. We will show that this approach is, in effect, an extension of Dynamic Mode Decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the "stochastic Koopman operator" [1]. Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data, and two that show potential applications of the Koopman eigenfunctions
    corecore