12,685 research outputs found
Decomposition of Nonlinear Dynamical Systems Using Koopman Gramians
In this paper we propose a new Koopman operator approach to the decomposition
of nonlinear dynamical systems using Koopman Gramians. We introduce the notion
of an input-Koopman operator, and show how input-Koopman operators can be used
to cast a nonlinear system into the classical state-space form, and identify
conditions under which input and state observable functions are well separated.
We then extend an existing method of dynamic mode decomposition for learning
Koopman operators from data known as deep dynamic mode decomposition to systems
with controls or disturbances. We illustrate the accuracy of the method in
learning an input-state separable Koopman operator for an example system, even
when the underlying system exhibits mixed state-input terms. We next introduce
a nonlinear decomposition algorithm, based on Koopman Gramians, that maximizes
internal subsystem observability and disturbance rejection from unwanted noise
from other subsystems. We derive a relaxation based on Koopman Gramians and
multi-way partitioning for the resulting NP-hard decomposition problem. We
lastly illustrate the proposed algorithm with the swing dynamics for an IEEE
39-bus system.Comment: 8 pages, submitted to IEEE 2018 AC
Model-Based Control Using Koopman Operators
This paper explores the application of Koopman operator theory to the control
of robotic systems. The operator is introduced as a method to generate
data-driven models that have utility for model-based control methods. We then
motivate the use of the Koopman operator towards augmenting model-based
control. Specifically, we illustrate how the operator can be used to obtain a
linearizable data-driven model for an unknown dynamical process that is useful
for model-based control synthesis. Simulated results show that with increasing
complexity in the choice of the basis functions, a closed-loop controller is
able to invert and stabilize a cart- and VTOL-pendulum systems. Furthermore,
the specification of the basis function are shown to be of importance when
generating a Koopman operator for specific robotic systems. Experimental
results with the Sphero SPRK robot explore the utility of the Koopman operator
in a reduced state representation setting where increased complexity in the
basis function improve open- and closed-loop controller performance in various
terrains, including sand.Comment: 8 page
Koopman Operator and its Approximations for Systems with Symmetries
Nonlinear dynamical systems with symmetries exhibit a rich variety of
behaviors, including complex attractor-basin portraits and enhanced and
suppressed bifurcations. Symmetry arguments provide a way to study these
collective behaviors and to simplify their analysis. The Koopman operator is an
infinite dimensional linear operator that fully captures a system's nonlinear
dynamics through the linear evolution of functions of the state space.
Importantly, in contrast with local linearization, it preserves a system's
global nonlinear features. We demonstrate how the presence of symmetries
affects the Koopman operator structure and its spectral properties. In fact, we
show that symmetry considerations can also simplify finding the Koopman
operator approximations using the extended and kernel dynamic mode
decomposition methods (EDMD and kernel DMD). Specifically, representation
theory allows us to demonstrate that an isotypic component basis induces block
diagonal structure in operator approximations, revealing hidden organization.
Practically, if the data is symmetric, the EDMD and kernel DMD methods can be
modified to give more efficient computation of the Koopman operator
approximation and its eigenvalues, eigenfunctions, and eigenmodes. Rounding out
the development, we discuss the effect of measurement noise
On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator
Extended Dynamic Mode Decomposition (EDMD) is an algorithm that approximates
the action of the Koopman operator on an -dimensional subspace of the space
of observables by sampling at points in the state space. Assuming that the
samples are drawn either independently or ergodically from some measure ,
it was shown that, in the limit as , the EDMD operator
converges to , where is the
-orthogonal projection of the action of the Koopman operator on the
finite-dimensional subspace of observables. In this work, we show that, as , the operator converges in the strong
operator topology to the Koopman operator. This in particular implies
convergence of the predictions of future values of a given observable over any
finite time horizon, a fact important for practical applications such as
forecasting, estimation and control. In addition, we show that accumulation
points of the spectra of correspond to the eigenvalues of the
Koopman operator with the associated eigenfunctions converging weakly to an
eigenfunction of the Koopman operator, provided that the weak limit of
eigenfunctions is nonzero. As a by-product, we propose an analytic version of
the EDMD algorithm which, under some assumptions, allows one to construct
directly, without the use of sampling. Finally, under
additional assumptions, we analyze convergence of (i.e.,
), proving convergence, along a subsequence, to weak eigenfunctions (or
eigendistributions) related to the eigenmeasures of the Perron-Frobenius
operator. No assumptions on the observables belonging to a finite-dimensional
invariant subspace of the Koopman operator are required throughout
A Class of Logistic Functions for Approximating State-Inclusive Koopman Operators
An outstanding challenge in nonlinear systems theory is identification or
learning of a given nonlinear system's Koopman operator directly from data or
models. Advances in extended dynamic mode decomposition approaches and machine
learning methods have enabled data-driven discovery of Koopman operators, for
both continuous and discrete-time systems. Since Koopman operators are often
infinite-dimensional, they are approximated in practice using
finite-dimensional systems. The fidelity and convergence of a given
finite-dimensional Koopman approximation is a subject of ongoing research. In
this paper we introduce a class of Koopman observable functions that confer an
approximate closure property on their corresponding finite-dimensional
approximations of the Koopman operator. We derive error bounds for the fidelity
of this class of observable functions, as well as identify two key learning
parameters which can be used to tune performance. We illustrate our approach on
two classical nonlinear system models: the Van Der Pol oscillator and the
bistable toggle switch.Comment: 8 page
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
The Koopman operator is a linear but infinite dimensional operator that
governs the evolution of scalar observables defined on the state space of an
autonomous dynamical system, and is a powerful tool for the analysis and
decomposition of nonlinear dynamical systems. In this manuscript, we present a
data driven method for approximating the leading eigenvalues, eigenfunctions,
and modes of the Koopman operator. The method requires a data set of snapshot
pairs and a dictionary of scalar observables, but does not require explicit
governing equations or interaction with a "black box" integrator. We will show
that this approach is, in effect, an extension of Dynamic Mode Decomposition
(DMD), which has been used to approximate the Koopman eigenvalues and modes.
Furthermore, if the data provided to the method are generated by a Markov
process instead of a deterministic dynamical system, the algorithm approximates
the eigenfunctions of the Kolmogorov backward equation, which could be
considered as the "stochastic Koopman operator" [1]. Finally, four illustrative
examples are presented: two that highlight the quantitative performance of the
method when presented with either deterministic or stochastic data, and two
that show potential applications of the Koopman eigenfunctions
- …
