6,325 research outputs found

    Knowledge-enhanced document embeddings for text classification

    Get PDF
    Accurate semantic representation models are essential in text mining applications. For a successful application of the text mining process, the text representation adopted must keep the interesting patterns to be discovered. Although competitive results for automatic text classification may be achieved with traditional bag of words, such representation model cannot provide satisfactory classification performances on hard settings where richer text representations are required. In this paper, we present an approach to represent document collections based on embedded representations of words and word senses. We bring together the power of word sense disambiguation and the semantic richness of word- and word-sense embedded vectors to construct embedded representations of document collections. Our approach results in semantically enhanced and low-dimensional representations. We overcome the lack of interpretability of embedded vectors, which is a drawback of this kind of representation, with the use of word sense embedded vectors. Moreover, the experimental evaluation indicates that the use of the proposed representations provides stable classifiers with strong quantitative results, especially in semantically-complex classification scenarios

    Integrated Node Encoder for Labelled Textual Networks

    Full text link
    Voluminous works have been implemented to exploit content-enhanced network embedding models, with little focus on the labelled information of nodes. Although TriDNR leverages node labels by treating them as node attributes, it fails to enrich unlabelled node vectors with the labelled information, which leads to the weaker classification result on the test set in comparison to existing unsupervised textual network embedding models. In this study, we design an integrated node encoder (INE) for textual networks which is jointly trained on the structure-based and label-based objectives. As a result, the node encoder preserves the integrated knowledge of not only the network text and structure, but also the labelled information. Furthermore, INE allows the creation of label-enhanced vectors for unlabelled nodes by entering their node contents. Our node embedding achieves state-of-the-art performances in the classification task on two public citation networks, namely Cora and DBLP, pushing benchmarks up by 10.0\% and 12.1\%, respectively, with the 70\% training ratio. Additionally, a feasible solution that generalizes our model from textual networks to a broader range of networks is proposed.Comment: 7 page

    Combination of Domain Knowledge and Deep Learning for Sentiment Analysis of Short and Informal Messages on Social Media

    Full text link
    Sentiment analysis has been emerging recently as one of the major natural language processing (NLP) tasks in many applications. Especially, as social media channels (e.g. social networks or forums) have become significant sources for brands to observe user opinions about their products, this task is thus increasingly crucial. However, when applied with real data obtained from social media, we notice that there is a high volume of short and informal messages posted by users on those channels. This kind of data makes the existing works suffer from many difficulties to handle, especially ones using deep learning approaches. In this paper, we propose an approach to handle this problem. This work is extended from our previous work, in which we proposed to combine the typical deep learning technique of Convolutional Neural Networks with domain knowledge. The combination is used for acquiring additional training data augmentation and a more reasonable loss function. In this work, we further improve our architecture by various substantial enhancements, including negation-based data augmentation, transfer learning for word embeddings, the combination of word-level embeddings and character-level embeddings, and using multitask learning technique for attaching domain knowledge rules in the learning process. Those enhancements, specifically aiming to handle short and informal messages, help us to enjoy significant improvement in performance once experimenting on real datasets.Comment: A Preprint of an article accepted for publication by Inderscience in IJCVR on September 201

    Deeper Text Understanding for IR with Contextual Neural Language Modeling

    Full text link
    Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.Comment: In proceedings of SIGIR 201
    • …
    corecore