76,986 research outputs found

    Structural Embedding of Syntactic Trees for Machine Comprehension

    Full text link
    Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods

    Interpretation of Natural Language Rules in Conversational Machine Reading

    Get PDF
    Most work in machine reading focuses on question answering problems where the answer is directly expressed in the text to read. However, many real-world question answering problems require the reading of text not because it contains the literal answer, but because it contains a recipe to derive an answer together with the reader's background knowledge. One example is the task of interpreting regulations to answer "Can I...?" or "Do I have to...?" questions such as "I am working in Canada. Do I have to carry on paying UK National Insurance?" after reading a UK government website about this topic. This task requires both the interpretation of rules and the application of background knowledge. It is further complicated due to the fact that, in practice, most questions are underspecified, and a human assistant will regularly have to ask clarification questions such as "How long have you been working abroad?" when the answer cannot be directly derived from the question and text. In this paper, we formalise this task and develop a crowd-sourcing strategy to collect 32k task instances based on real-world rules and crowd-generated questions and scenarios. We analyse the challenges of this task and assess its difficulty by evaluating the performance of rule-based and machine-learning baselines. We observe promising results when no background knowledge is necessary, and substantial room for improvement whenever background knowledge is needed.Comment: EMNLP 201

    Supervised Transfer Learning for Product Information Question Answering

    Full text link
    Popular e-commerce websites such as Amazon offer community question answering systems for users to pose product related questions and experienced customers may provide answers voluntarily. In this paper, we show that the large volume of existing community question answering data can be beneficial when building a system for answering questions related to product facts and specifications. Our experimental results demonstrate that the performance of a model for answering questions related to products listed in the Home Depot website can be improved by a large margin via a simple transfer learning technique from an existing large-scale Amazon community question answering dataset. Transfer learning can result in an increase of about 10% in accuracy in the experimental setting where we restrict the size of the data of the target task used for training. As an application of this work, we integrate the best performing model trained in this work into a mobile-based shopping assistant and show its usefulness.Comment: 2018 17th IEEE International Conference on Machine Learning and Application
    corecore