91,834 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Data-Driven Segmentation of Post-mortem Iris Images

    Full text link
    This paper presents a method for segmenting iris images obtained from the deceased subjects, by training a deep convolutional neural network (DCNN) designed for the purpose of semantic segmentation. Post-mortem iris recognition has recently emerged as an alternative, or additional, method useful in forensic analysis. At the same time it poses many new challenges from the technological standpoint, one of them being the image segmentation stage, which has proven difficult to be reliably executed by conventional iris recognition methods. Our approach is based on the SegNet architecture, fine-tuned with 1,300 manually segmented post-mortem iris images taken from the Warsaw-BioBase-Post-Mortem-Iris v1.0 database. The experiments presented in this paper show that this data-driven solution is able to learn specific deformations present in post-mortem samples, which are missing from alive irises, and offers a considerable improvement over the state-of-the-art, conventional segmentation algorithm (OSIRIS): the Intersection over Union (IoU) metric was improved from 73.6% (for OSIRIS) to 83% (for DCNN-based presented in this paper) averaged over subject-disjoint, multiple splits of the data into train and test subsets. This paper offers the first known to us method of automatic processing of post-mortem iris images. We offer source codes with the trained DCNN that perform end-to-end segmentation of post-mortem iris images, as described in this paper. Also, we offer binary masks corresponding to manual segmentation of samples from Warsaw-BioBase-Post-Mortem-Iris v1.0 database to facilitate development of alternative methods for post-mortem iris segmentation

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    Image segmentation and feature extraction for recognizing strokes in tennis game videos

    Get PDF
    This paper addresses the problem of recognizing human actions from video. Particularly, the case of recognizing events in tennis game videos is analyzed. Driven by our domain knowledge, a robust player segmentation algorithm is developed real video data. Further, we introduce a number of novel features to be extracted for our particular application. Different feature combinations are investigated in order to find the optimal one. Finally, recognition results for different classes of tennis strokes using automatic learning capability of Hidden Markov Models (HMMs) are presented. The experimental results demonstrate that our method is close to realizing statistics of tennis games automatically using ordinary TV broadcast videos
    • …
    corecore