18,801 research outputs found

    A study on the ephemeral nature of knowledge shared within multiagent systems

    Full text link
    Achieving knowledge sharing within an artificial swarm system could lead to significant development in autonomous multiagent and robotic systems research and realize collective intelligence. However, this is difficult to achieve since there is no generic framework to transfer skills between agents other than a query-response-based approach. Moreover, natural living systems have a "forgetfulness" property for everything they learn. Analyzing such ephemeral nature (temporal memory properties of new knowledge gained) in artificial systems has never been studied in the literature. We propose a behavior tree-based framework to realize a query-response mechanism for transferring skills encoded as the condition-action control sub-flow of that portion of the knowledge between agents to fill this gap. We simulate a multiagent group with different initial knowledge on a foraging mission. While performing basic operations, each robot queries other robots to respond to an unknown condition. The responding robot shares the control actions by sharing a portion of the behavior tree that addresses the queries. Specifically, we investigate the ephemeral nature of the new knowledge gained through such a framework, where the knowledge gained by the agent is either limited due to memory or is forgotten over time. Our investigations show that knowledge grows proportionally with the duration of remembrance, which is trivial. However, we found minimal impact on knowledge growth due to memory. We compare these cases against a baseline that involved full knowledge pre-coded on all agents. We found that knowledge-sharing strived to match the baseline condition by sharing and achieving knowledge growth as a collective system.Comment: In Proceedings of the Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022

    Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems

    Full text link
    Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos--behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.Comment: 4 pages, 3 figures, http://www.santafe.edu/projects/CompMech/papers/credlmas.html; updated references, corrected typos, changed conten

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur
    corecore