3 research outputs found

    Debugging knowledge-based applications with a generic toolkit.

    Get PDF
    Knowledge refinement tools assist in the debugging and maintenance of knowledge based systems (KBSs) by attempting to identify and correct faults in the knowledge that account for incorrect problem-solving. Most refinement systems target a single shell and are able to refine only KBSs implemented in this shell. Our KRUSTWorks toolkit is unusual in that it provides refinement facilities that can be applied to a number of different shells, and is designed to be extensible to new shells. The paper outlines the components of the KRUSTWorks toolkit and how it is applied to faulty KBSs. It describes its application to two real aerospace KBSs implemented in CLIPS and POWER-MODEL to demonstrate its flexibility of application

    Maintaining retrieval knowledge in a case-based reasoning system.

    Get PDF
    The knowledge stored in a case base is central to the problem solving of a case-based reasoning (CBR) system. Therefore, case-base maintenance is a key component of maintaining a CBR system. However, other knowledge sources, such as indexing and similarity knowledge for improved case retrieval, also play an important role in CBR problem solving. For many CBR applications, the refinement of this retrieval knowledge is a necessary component of CBR maintenance. This article focuses on optimization of the parameters and feature selections/weights for the indexing and nearest-neighbor algorithms used by CBR retrieval. Optimization is applied after case-base maintenance and refines the CBR retrieval to reflect changes that have occurred to cases in the case base. The optimization process is generic and automatic, using knowledge contained in the cases. In this article we demonstrate its effectiveness on a real tablet formulation application in two maintenance scenarios. One scenario, a growing case base, is provided by two snapshots of a formulation database. A change in the company's formulation policy results in a second, more fundamental requirement for CBR maintenance. We show that after case-base maintenance, the CBR system did indeed benefit from also refining the retrieval knowledge. We believe that existing CBR shells would benefit from including an option to automatically optimize the retrieval process

    A case-based reasoning methodology to formulating polyurethanes

    Get PDF
    Formulation of polyurethanes is a complex problem poorly understood as it has developed more as an art rather than a science. Only a few experts have mastered polyurethane (PU) formulation after years of experience and the major raw material manufacturers largely hold such expertise. Understanding of PU formulation is at present insufficient to be developed from first principles. The first principle approach requires time and a detailed understanding of the underlying principles that govern the formulation process (e.g. PU chemistry, kinetics) and a number of measurements of process conditions. Even in the simplest formulations, there are more that 20 variables often interacting with each other in very intricate ways. In this doctoral thesis the use of the Case-Based Reasoning and Artificial Neural Network paradigm is proposed to enable support for PUs formulation tasks by providing a framework for the collection, structure, and representation of real formulating knowledge. The framework is also aimed at facilitating the sharing and deployment of solutions in a consistent and referable way, when appropriate, for future problem solving. Two basic problems in the development of a Case-Based Reasoning tool that uses past flexible PU foam formulation recipes or cases to solve new problems were studied. A PU case was divided into a problem description (i. e. PU measured mechanical properties) and a solution description (i. e. the ingredients and their quantities to produce a PU). The problems investigated are related to the retrieval of former PU cases that are similar to a new problem description, and the adaptation of the retrieved case to meet the problem constraints. For retrieval, an alternative similarity measure based on the moment's description of a case when it is represented as a two dimensional image was studied. The retrieval using geometric, central and Legendre moments was also studied and compared with a standard nearest neighbour algorithm using nine different distance functions (e.g. Euclidean, Canberra, City Block, among others). It was concluded that when cases were represented as 2D images and matching is performed by using moment functions in a similar fashion to the approaches studied in image analysis in pattern recognition, low order geometric and Legendre moments and central moments of any order retrieve the same case as the Euclidean distance does when used in a nearest neighbour algorithm. This means that the Euclidean distance acts a low moment function that represents gross level case features. Higher order (moment's order>3) geometric and Legendre moments while enabling finer details about an image to be represented had no standard distance function counterpart. For the adaptation of retrieved cases, a feed-forward back-propagation artificial neural network was proposed to reduce the adaptation knowledge acquisition effort that has prevented building complete CBR systems and to generate a mapping between change in mechanical properties and formulation ingredients. The proposed network was trained with the differences between problem descriptions (i.e. mechanical properties of a pair of foams) as input patterns and the differences between solution descriptions (i.e. formulation ingredients) as the output patterns. A complete data set was used based on 34 initial formulations and a 16950 epochs trained network with 1102 training exemplars, produced from the case differences, gave only 4% error. However, further work with a data set consisting of a training set and a small validation set failed to generalise returning a high percentage of errors. Further tests on different training/test splits of the data also failed to generalise. The conclusion reached is that the data as such has insufficient common structure to form any general conclusions. Other evidence to suggest that the data does not contain generalisable structure includes the large number of hidden nodes necessary to achieve convergence on the complete data set.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore