84 research outputs found

    Common Sense or World Knowledge? Investigating Adapter-Based Knowledge Injection into Pretrained Transformers

    Full text link
    Following the major success of neural language models (LMs) such as BERT or GPT-2 on a variety of language understanding tasks, recent work focused on injecting (structured) knowledge from external resources into these models. While on the one hand, joint pretraining (i.e., training from scratch, adding objectives based on external knowledge to the primary LM objective) may be prohibitively computationally expensive, post-hoc fine-tuning on external knowledge, on the other hand, may lead to the catastrophic forgetting of distributional knowledge. In this work, we investigate models for complementing the distributional knowledge of BERT with conceptual knowledge from ConceptNet and its corresponding Open Mind Common Sense (OMCS) corpus, respectively, using adapter training. While overall results on the GLUE benchmark paint an inconclusive picture, a deeper analysis reveals that our adapter-based models substantially outperform BERT (up to 15-20 performance points) on inference tasks that require the type of conceptual knowledge explicitly present in ConceptNet and OMCS

    Conceptualized Representation Learning for Chinese Biomedical Text Mining

    Full text link
    Biomedical text mining is becoming increasingly important as the number of biomedical documents and web data rapidly grows. Recently, word representation models such as BERT has gained popularity among researchers. However, it is difficult to estimate their performance on datasets containing biomedical texts as the word distributions of general and biomedical corpora are quite different. Moreover, the medical domain has long-tail concepts and terminologies that are difficult to be learned via language models. For the Chinese biomedical text, it is more difficult due to its complex structure and the variety of phrase combinations. In this paper, we investigate how the recently introduced pre-trained language model BERT can be adapted for Chinese biomedical corpora and propose a novel conceptualized representation learning approach. We also release a new Chinese Biomedical Language Understanding Evaluation benchmark (\textbf{ChineseBLUE}). We examine the effectiveness of Chinese pre-trained models: BERT, BERT-wwm, RoBERTa, and our approach. Experimental results on the benchmark show that our approach could bring significant gain. We release the pre-trained model on GitHub: https://github.com/alibaba-research/ChineseBLUE.Comment: WSDM2020 Health Da

    KSAT: Knowledge-infused Self Attention Transformer -- Integrating Multiple Domain-Specific Contexts

    Full text link
    Domain-specific language understanding requires integrating multiple pieces of relevant contextual information. For example, we see both suicide and depression-related behavior (multiple contexts) in the text ``I have a gun and feel pretty bad about my life, and it wouldn't be the worst thing if I didn't wake up tomorrow''. Domain specificity in self-attention architectures is handled by fine-tuning on excerpts from relevant domain specific resources (datasets and external knowledge - medical textbook chapters on mental health diagnosis related to suicide and depression). We propose a modified self-attention architecture Knowledge-infused Self Attention Transformer (KSAT) that achieves the integration of multiple domain-specific contexts through the use of external knowledge sources. KSAT introduces knowledge-guided biases in dedicated self-attention layers for each knowledge source to accomplish this. In addition, KSAT provides mechanics for controlling the trade-off between learning from data and learning from knowledge. Our quantitative and qualitative evaluations show that (1) the KSAT architecture provides novel human-understandable ways to precisely measure and visualize the contributions of the infused domain contexts, and (2) KSAT performs competitively with other knowledge-infused baselines and significantly outperforms baselines that use fine-tuning for domain-specific tasks

    An Improved Baseline for Sentence-level Relation Extraction

    Full text link
    Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence. Many efforts have been devoted to this problem, while the best performing methods are still far from perfect. In this paper, we revisit two problems that affect the performance of existing RE models, namely entity representation and noisy or ill-defined labels. Our improved baseline model, incorporated with entity representations with typed markers, achieves an F1 of 74.6% on TACRED, significantly outperforms previous SOTA methods. Furthermore, the presented new baseline achieves an F1 of 91.1% on the refined Re-TACRED dataset, demonstrating that the pre-trained language models achieve unexpectedly high performance on this task. We release our code to the community for future research.Comment: Code available at https://github.com/wzhouad/RE_improved_baselin
    corecore