684 research outputs found

    Harvesting Information from Captions for Weakly Supervised Semantic Segmentation

    Full text link
    Since acquiring pixel-wise annotations for training convolutional neural networks for semantic image segmentation is time-consuming, weakly supervised approaches that only require class tags have been proposed. In this work, we propose another form of supervision, namely image captions as they can be found on the Internet. These captions have two advantages. They do not require additional curation as it is the case for the clean class tags used by current weakly supervised approaches and they provide textual context for the classes present in an image. To leverage such textual context, we deploy a multi-modal network that learns a joint embedding of the visual representation of the image and the textual representation of the caption. The network estimates text activation maps (TAMs) for class names as well as compound concepts, i.e. combinations of nouns and their attributes. The TAMs of compound concepts describing classes of interest substantially improve the quality of the estimated class activation maps which are then used to train a network for semantic segmentation. We evaluate our method on the COCO dataset where it achieves state of the art results for weakly supervised image segmentation

    Referring Expression Comprehension: A Survey of Methods and Datasets

    Full text link
    Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.Comment: Accepted to IEEE TM

    Knowledge-guided Pairwise Reconstruction Network for Weakly Supervised Referring Expression Grounding

    Full text link
    Weakly supervised referring expression grounding (REG) aims at localizing the referential entity in an image according to linguistic query, where the mapping between the image region (proposal) and the query is unknown in the training stage. In referring expressions, people usually describe a target entity in terms of its relationship with other contextual entities as well as visual attributes. However, previous weakly supervised REG methods rarely pay attention to the relationship between the entities. In this paper, we propose a knowledge-guided pairwise reconstruction network (KPRN), which models the relationship between the target entity (subject) and contextual entity (object) as well as grounds these two entities. Specifically, we first design a knowledge extraction module to guide the proposal selection of subject and object. The prior knowledge is obtained in a specific form of semantic similarities between each proposal and the subject/object. Second, guided by such knowledge, we design the subject and object attention module to construct the subject-object proposal pairs. The subject attention excludes the unrelated proposals from the candidate proposals. The object attention selects the most suitable proposal as the contextual proposal. Third, we introduce a pairwise attention and an adaptive weighting scheme to learn the correspondence between these proposal pairs and the query. Finally, a pairwise reconstruction module is used to measure the grounding for weakly supervised learning. Extensive experiments on four large-scale datasets show our method outperforms existing state-of-the-art methods by a large margin.Comment: Accepted by ACMMM 2019. arXiv admin note: text overlap with arXiv:1908.1056
    • …
    corecore