4 research outputs found

    Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study

    Get PDF
    Eating less meat is increasingly seen as a healthier, more ethical option. This is leading to growing numbers of flexitarian consumers looking for plant-based meat alternatives (PBMAs) to replace at least some of the animal meat they consume. Popular PBMA products amongst flexitarians, including plant-based mince, burgers, sausages and meatballs, are often perceived as low-quality, ultra-processed foods. However, we argue that the mere industrial processing of ingredients of plant origin does not make a PBMA product ultra-processed by default. To test our hypothesis, we conducted a randomised controlled trial to assess the changes to the gut microbiota of a group of 20 participants who replaced several meat-containing meals per week with meals cooked with PBMA products and compared these changes to those experienced by a size-matched control. Stool samples were subjected to 16S rRNA sequencing. The resulting raw data was analysed in a compositionality-aware manner, using a range of innovative bioinformatic methods. Noteworthy changes included an increase in butyrate metabolising potential—chiefly in the 4-aminobutyrate/succinate and glutarate pathways—and in the joint abundance of butyrate-producing taxa in the intervention group compared to control. We also observed a decrease in the Tenericutes phylum in the intervention group and an increase in the control group. Based on our findings, we concluded that the occasional replacement of animal meat with PBMA products seen in flexitarian dietary patterns can promote positive changes in the gut microbiome of consumers

    The impact of Opisthorchis felineus infection and praziquantel treatment on the intestinal microbiota in children

    Full text link
    peer reviewedThe presence of some species of helminths is associated with changes in host microbiota composition and diversity, which varies widely depending on the infecting helminth species and other factors. We conducted a prospective case-control study to evaluate the gut microbiota in children with Opisthorchis felineus infection (n=50) before and after anthelmintic treatment and in uninfected children (n=49) in the endemic region. A total of 99 children and adolescents aged between 7 and 18 years were enrolled to the study. Helminth infection was assessed before and at 3 months after treatment with praziquantel. A complex examination for each participant was performed in the study, including an assessment of the clinical symptoms and an intestinal microbiota survey by 16S rRNA gene sequencing of stool samples. There was no change in alpha diversity between O. felineus-infected and control groups. We found significant changes in the abundances of bacterial taxa at different taxonomic levels between the infected and uninfected individuals. Enterobacteriaceae family was more abundant in infected participants compared to uninfected children. On the genus level, O. felineus-infected participants’ microbiota showed higher levels of Lachnospira, Escherichia-Shigella, Bacteroides, Eubacterium eligens group, Ruminiclostridium 6, Barnesiella, Oscillibacter, Faecalitalea and Anaerosporobacter and reduction of Blautia, Lachnospiraceae FCS020 and Eubacterium hallii group in comparison with the uninfected individuals. Following praziquantel therapy, there were significant differences in abundances of some microorganisms, including an increase of Faecalibacterium and decrease of Megasphaera, Roseburia. Enterobacteriaceae and Escherichia abundances were decreased up to the control group values. Our results highlight the importance of the host-parasite-microbiota interactions for the community health in the endemic regions. © 202

    Knomics-Biota - a system for exploratory analysis of human gut microbiota data

    No full text
    Abstract Background Metagenomic surveys of human microbiota are becoming increasingly widespread in academic research as well as in food and pharmaceutical industries and clinical context. Intuitive tools for investigating experimental data are of high interest to researchers. Results Knomics-Biota is a web-based resource for exploratory analysis of human gut metagenomes. Users can generate and share analytical reports corresponding to common experimental schemes (like case-control study or paired comparison). Interactive visualizations and statistical analysis are provided in association with the external factors and in the context of thousands of publicly available datasets arranged into thematic collections. The web-service is available at https://biota.knomics.ru. Conclusions Knomics-Biota web service is a comprehensive tool for interactive metagenomic data analysis
    corecore