287,767 research outputs found
Reusable Ionogel-based Photo-actuators in a Lab-on-a-disc
This paper describes the design, fabrication and performance of a reusable ionogel-based photo-actuator, in-situ photopolymerised into a lab-on-a-disc microfluidic device, for flow control. The ionogel provides an effective barrier to liquids during storage of reagents and spinning of the disc. A simple LED (white light) triggers actuation of the ionogel for selective and precise channel opening at a desired location and time. The mechanism of actuation is reversible, and regeneration of the actuator is possible with an acid chloride solution. In order to achieve regeneration, the Lab-on-a-Disc device was designed with a microchannel connected perpendicularly to the bottom of the ionogel actuator (regeneration channel). This configuration allows the acid solution to reach the actuator, independently from the main channel, which initiates ionogel swelling and main channel closure, and thereby enables reusability of the whole device.Economía y Competitividad), Spain. This project has receivedfunding from the European Union Seventh Framework Programme(FP7) for Research, Technological Development and Demonstrationunder grant agreement no. 604241. JS and FBL acknowledge fund-ing support from Gobierno de Espa˜na, Ministerio de Economía yCompetitividad, with Grant No. BIO2016-80417-P and personallyacknowledge to Marian M. De Pancorbo for letting them to use herlaboratory facilities at UPV/EHU. A.T., L.F., and D.D. are grateful forfinancial support from the Marie Curie Innovative Training Net-work OrgBIO (Marie Curie ITN, GA607896) and Science FoundationIreland (SFI) under the Insight Centre for Data Analytics initiative,Grant Number SFI/12/RC/2289
Containerless high temperature property measurements by atomic fluorescence
Containerless high temperature processing and material property measurements are discussed. Researchers developed methods for non-contact suspension, heating, and property measurement for materials at temperatures up to 3,680K, the melting point of tungsten. New, scientifically interesting results were obtained in Earth-based research. These results and the demonstration of new methods and techniques form a basis for further advances under the low gravity environment of space where containerless conditions are more easily achieved. Containerless high temperature material property investigations that have been completed in this and our earlier projects include measurements of fluorine LaB sub 6 reaction kinetics at 1,000 to 1,500K; optical property measurements on sapphire (Al2O3) at temperatures up to the melting point (2,327K); and vapor pressure measurements for LaB sub 6 at 2,000 to 2,500K, for molybdenum up to 2,890K and for tungsten up to 3,680K. Gas jet levitation which is applicable to any solid material, and electromagnetic levitation of electrical conductors were used to suspend the materials of interest. Non-contact heating and property measurements were achieved by optical techniques, i.e., laser heating, laser induced fluorescence measurements of vapor concentrations, and optical pyrometry for specimen temperatures
Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer
In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. © 2016 Wiley Periodicals, Inc
Novel "green" catalysts for controlled ring-opening polymerization of lactide
Syntéza polylaktidu (PLA) polymerací za otevření kruhu cyklického monomeru (ROP) může být uskutečněna různými způsoby. Literatura uvádí více než 100 katalytických systémů, jejichž pomocí lze polylaktid a jiné biodegradabilní alifatické polyestery získat. Například organokovové katalyzátory na bázi Sn, Zn, Al atd. se po splnění své polymerační funkce stávají kontaminanty a pro humánní implantáty je použití takového materiálu diskutabilní. V současné době jsou v centru výzkumné pozornosti nové N-heterocyklické karbenové katalyzátory. Tyto „metal-free“ katalytické struktury jsou schopné reprodukovatelně řídit syntézu polymerů předem definované molekulové hmotnosti s definovanými koncovými skupinami a nízkou polydisperzitou, která je charakteristická pro živý průběh polymerace. Nabízí se možnost syntézy blokových kopolymerů a různorodých makromolekulárních architektur. Předložená diplomová práce se zabývá studiem polymerace cyklického monomeru D,L-laktidu katalyzované N-heterocyklickým karbenem. Polymerace byly vedeny v přítomnosti benzylalkoholu jako iniciátoru v roztoku THF. Byl sledován vliv složení reakčního systému monomer – iniciátor – katalyzátor. Dále byly připraveny polymery opticky čistého L-laktidu s makroiniciátory PEG s Mn = 1000 a 2000 g/mol. Střední číselná molekulová hmotnost (Mn) a polydisperzita (PDI) byly stanoveny pomocí GPC. Definovatelnost koncových skupin vybraných polymerů byla prokázána pomocí 1H NMR.The synthesis of polylactide (PLA) by ring-opening polymerization (ROP) of cyclic monomer can be realized by different routes. More than 100 catalysts for the synthesis of polylactide and other biodegradable aliphatic polyesters are published in the literature. For example organometallic catalysts based on Sn, Zn, Al etc. after finishing polymerization function became contaminants and using obtained polymer material in human body is controversial. At present, the research is focused on novel N-hererocyclic carbene catalysts. These metal-free catalysts are able to produce polymers with controlled molecular weight, narrow polydispersity, end-group fidelity with high reproducibility as well as to synthesize the block copolymers and complex macromolecular architectures, which is characteristic for living polymerization system. This diploma thesis is focused on study of polymerization of cyclic monomer D,L-lactide catalyzed by N-hererocyclic carbene. Polymerizations were carried out at the presence of benzylalcohol as initiator at THF. We were focused on the influence of composition of reaction system monomer – initiator – catalyst. Polymers of optically pure L-lactide with macroinitiators PEG with Mn of 1000 a 2000 g/mol were prepared as well. Number average molecular weight (Mn) and polydispersity index (PDI) was determined by GPC. 1H NMR was used to prove end-group fidelity.
Stochastic Ratcheting on a Funneled Energy Landscape is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles
Current understanding of how contractility emerges in disordered actomyosin
networks of non-muscle cells is still largely based on the intuition derived
from earlier works on muscle contractility. This view, however, largely
overlooks the free energy gain following passive cross-linker binding, which,
even in the absence of active fluctuations, provides a thermodynamic drive
towards highly overlapping filamentous states. In this work, we shed light on
this phenomenon, showing that passive cross-linkers, when considered in the
context of two anti-parallel filaments, generate noticeable contractile forces.
However, as binding free energy of cross-linkers is increased, a sharp onset of
kinetic arrest follows, greatly diminishing effectiveness of this contractility
mechanism, allowing the network to contract only with weakly resisting tensions
at its boundary. We have carried out stochastic simulations elucidating this
mechanism, followed by a mean-field treatment that predicts how contractile
forces asymptotically scale at small and large binding energies, respectively.
Furthermore, when considering an active contractile filament pair, based on
non-muscle myosin II, we found that the non-processive nature of these motors
leads to highly inefficient force generation, due to recoil slippage of the
overlap during periods when the motor is dissociated. However, we discovered
that passive cross-linkers can serve as a structural ratchet during these
unbound motor time spans, resulting in vast force amplification. Our results
shed light on the non-equilibrium effects of transiently binding proteins in
biological active matter, as observed in the non-muscle actin cytoskeleton,
showing that highly efficient contractile force dipoles result from synergy of
passive cross-linker and active motor dynamics, via a ratcheting mechanism on a
funneled energy landscape.Comment: 13 pages, 6 figure
Real-time imaging of Leishmania mexicana-infected early phagosomes: a study using primary macrophages generated from green fluorescent protein-Rab5 transgenic mice
The small GTPase Rab5 is a key regulator of endosome/phagosome maturation and in intravesicular infections marks a phagosome stage at which decisions over pathogen replication or destruction are integrated. It is currently unclear whether Leishmania-infected phagosomes uniformly pass through a Rab5+ stage on their intracellular path to compartments with late endosomal/early lysosomal characteristics. Differences in routes and final compartments could have consequences for accessibility to antileishmanial drugs. Here, we generated a unique gfp-rab5 transgenic mouse model to visualize Rab5 recruitment to early parasite-containing phagosomes in primary host cells. Using real-time fluorescence imaging of phagosomes carrying Leishmania mexicana, we determined that parasite-infested phagosomes follow a uniform sequence of transient Rab5 recruitment. Residence in Rab5+ compartments was much shorter compared with phagosomes harboring latex beads. Furthermore, a comparative analysis of parasite life-cycle stages and mutants deficient in lpg1, the gene encoding the enzyme required for synthesis of the dominant surface lipophosphoglycan, indicated that parasite surface ligands and host cell receptors modulate pathogen residence times in Rab5+ phagosomes, but, as far as tested, had no significant effect on intracellular L. mexicana survival or replication.—Lippuner, C., Paape, D., Paterou, A., Brand, J., Richardson, M., Smith, A. J., Hoffmann, K., Brinkmann, V., Blackburn, C., Aebischer, T. Real-time imaging of Leishmania mexicana-infected early phagosomes: a study using primary macrophages generated from green fluorescent protein-Rab5 transgenic mice
Growth and inactivation of Salmonella enterica and Listeria monocytogenes in broth and validation in ground pork meat during simulated home storage abusive temperature and home pan-frying
Ground pork meat with natural microbiota and inoculated with low initial densities (1-10 or 10-100 CFU/g) of Salmonella enter/ca or Listeria monocytogenes was stored under abusive temperature at 10 degrees C and thermally treated by a simulated home pan-frying procedure. The growth and inactivation characteristics were also evaluated in broth. In ground pork meat, the population of S. enter/ca increased by less than one log after 12 days of storage at 10 degrees C, whereas L. monocytogenes increased by 2.3 to 2.8 log units. No unusual intrinsic heat resistance of the pathogens was noted when tested in broth at 60 degrees C although shoulders were observed on the inactivation curves of L. monocytogenes. After growth of S. enter/ca and L. monocytogenes at 10 degrees C for 5 days to levels of 1.95 log CFU/g and 3.10 log CFU/g, respectively, in ground pork meat, their inactivation in the burger subjected to a simulated home pan-frying was studied. After thermal treatment S. enter/ca was undetectable but L. monocytogenes was recovered in three out of six of the 25 g burger samples. Overall, the present study shows that data on growth and inactivation of broths are indicative but may underestimate as well as overestimate behavior of pathogens and thus need confirmation in food matrix conditions to assess food safety in reasonably foreseen abusive conditions of storage and usual home pan-frying of meat burgers in Belgium
Co-Existence of Inoculated Yeast and Lactic Acid Bacteria and Their Impact on the Aroma Profile and Sensory Traits of Tempranillo Red Wine
This study investigates the effects of simultaneous inoculation of a selected Saccharomyces cerevisiae yeast strain with two different commercial strains of wine bacteria Oenococcus oeni at the beginning of the alcoholic fermentation on the kinetics of malolactic fermentation (MLF), wine chemical composition, and organoleptic characteristics in comparison with spontaneous MLF in Tempranillo grape must from Castilla-La Mancha (Spain). Evolution of MLF was assessed by the periodic analysis of L-malic acid through the enzymatic method, and most common physiochemical parameters and sensory traits were evaluated using a standardized sensory analysis. The samples were analyzed by GC/MS in SCAN mode using a Trace GC gas chromatograph and a DSQII quadrupole mass analyzer. Co-inoculation reduced the overall fermentation time by up to 2 weeks leading to a lower increase in volatile acidity. The fermentation-derived wine volatiles profile was distinct between the co-inoculated wines and spontaneous MLF and was influenced by the selected wine bacteria used in co-inoculation. Co-inoculation allows MLF to develop under reductive conditions and results in wines with very few lactic and buttery flavors, which is related to the impact of specific compounds like 2,3-butanedione. This compound has been also confirmed as being dependent on the wine bacteria use
Nestrukturirani modeli mliječno-kiselog vrenja
To describe a microbial process, two kinds of models can be developed, structured and unstructured models. Contrary to structured models, which take into account some basic aspects of cell structure, their function and composition, no physiological characterization of cells is considered in unstructured models, which only consider total cellular concentration. However, in spite of their simplicity, unstructured models have proven to accurately describe lactic acid fermentation in a wide range of experimental conditions and media. A partial link between cell growth and production, namely the Luedeking and Piret model, is mostly considered by the authors. Culture pH is the main parameter to be considered for model development. Acidic pH leads to inhibitory concentrations of undissociated lactic acid, the main inhibitory component, which causes cessation of growth and then production. On the other hand, pH control at optimal value for LAB growth allows to overcome product inhibition (by the total lactic acid produced or its undissociated part); hence nutritional limitations have to be considered for model development. Nitrogen is mainly involved in cessation of growth, owing to the fastidious nutritional requirements of LAB, while lactic acid production ceased when carbon was exhausted from the medium. The lack of substrate inhibition when usual concentrations of carbon substrate are used should be noted.Da bi se opisao mikrobni proces, upotijebljeni su strukturirani i nestrukturirani modeli. Strukturirani modeli uzimaju u obzir strukturu, funkciju i raspored stanica, a nestrukturirani ne uzimaju fiziološka svojstva, već samo ukupnu koncentraciju stanica. Ipak, usprkos njihovoj jednostavnosti, nestrukturirani modeli precizno opisuju mliječno-kiselo vrenje u različitim eksperimentalnim uvjetima i na raznim podlogama. Autori najčešće koriste Luedekingov i Piretov model, koji opisuje djelomičnu vezu između rasta stanica i proizvodnje mliječne kiseline. U razvoju ovoga modela najčešće je pH-vrijednost glavni parametar. Pri niskoj pH-vrijednosti nastaju inhibicijske koncentracije nedisocirane mliječne kiseline, što zaustavlja rast mliječno-kiselih bakterija, a time i proizvodnju mliječne kiseline. Taj se inhibicijski učinak može prevladati održavanjem optimalne pH-vrijednosti, ali pritom treba uzeti u obzir utjecaj hranjivih tvari na rast mliječno-kiselih bakterija. Nedostatak dušika je najčešći uzrok inhibicije mliječno-kiselih bakterija, jer im je prijeko potreban za rast, dok nakon iscrpljivanja ugljika iz podloge prestaje proizvodnja mliječne kiseline, što se može izbjeći korištenjem odgovarajućih koncentracija ugljika
- …
