411,685 research outputs found

    Kinetic Study of Gluconic Acid Batch Fermentation by Aspergillus niger

    Get PDF
    Gluconic acid is one of interesting chemical products in industries such as detergents, leather, photographic, textile, and especially in food and pharmaceutical industries. Fermentation is an advantageous process to produce gluconic acid. Mathematical modeling is important in the design and operation of fermentation process. In fact, kinetic data must be available for modeling. The kinetic parameters of gluconic acid production by Aspergillus niger in batch culture was studied in this research at initial substrate concentration of 150, 200 and 250 g/l. The kinetic models used were logistic equation for growth, Luedeking-Piret equation for gluconic acid formation, and Luedeking-Piret-like equation for glucose consumption. The Kinetic parameters in the model were obtained by minimizing non linear least squares curve fitting

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Structural Kinetic Modeling of Metabolic Networks

    Full text link
    To develop and investigate detailed mathematical models of cellular metabolic processes is one of the primary challenges in systems biology. However, despite considerable advance in the topological analysis of metabolic networks, explicit kinetic modeling based on differential equations is still often severely hampered by inadequate knowledge of the enzyme-kinetic rate laws and their associated parameter values. Here we propose a method that aims to give a detailed and quantitative account of the dynamical capabilities of metabolic systems, without requiring any explicit information about the particular functional form of the rate equations. Our approach is based on constructing a local linear model at each point in parameter space, such that each element of the model is either directly experimentally accessible, or amenable to a straightforward biochemical interpretation. This ensemble of local linear models, encompassing all possible explicit kinetic models, then allows for a systematic statistical exploration of the comprehensive parameter space. The method is applied to two paradigmatic examples: The glycolytic pathway of yeast and a realistic-scale representation of the photosynthetic Calvin cycle.Comment: 14 pages, 8 figures (color

    A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows IV: full Boltzmann and Model Equations

    Full text link
    Fluid dynamic equations are valid in their respective modeling scales. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the flow study in this regime. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well

    The Kinetic Basis of Self-Organized Pattern Formation

    Full text link
    In his seminal paper on morphogenesis (1952), Alan Turing demonstrated that different spatio-temporal patterns can arise due to instability of the homogeneous state in reaction-diffusion systems, but at least two species are necessary to produce even the simplest stationary patterns. This paper is aimed to propose a novel model of the analog (continuous state) kinetic automaton and to show that stationary and dynamic patterns can arise in one-component networks of kinetic automata. Possible applicability of kinetic networks to modeling of real-world phenomena is also discussed.Comment: 8 pages, submitted to the 14th International Conference on the Synthesis and Simulation of Living Systems (Alife 14) on 23.03.2014, accepted 09.05.201

    Localization and Pattern Formation in BBGKY Hierarchy

    Full text link
    A fast and efficient numerical-analytical approach is proposed for modeling complex behaviour in the BBGKY hierarchy of kinetic equations. Numerical modeling shows the creation of various internal structures from localized modes, which are related to the localized or chaotic type of behaviour and the corresponding patterns (waveletons) formation.Comment: LaTeX2e, w-art.cls, w-thm.sty, w-pamm.clo, 3 pages, 1 figure, presented at GAMM Meeting, March, 2004, Dresden, German
    corecore