15 research outputs found

    Macroscopic dynamics of incoherent soliton ensembles: soliton-gas kinetics and direct numerical modeling

    Get PDF
    We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `cold' soliton gas consisting of randomly distributed solitons of approximately the same amplitude; and (ii) collision of two cold soliton gases of different amplitudes (soliton gas shock tube problem) leading to the formation of an incoherend dispersive shock wave. In both cases excellent agreement is observed between the analytical predictions of the soliton gas kinetics and the direct numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a quantitatively accurate model for macroscopic non-equilibrium dynamics of incoherent soliton ensembles.Comment: 20 pages, 8 figures, 34 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    A geometric viewpoint on generalized hydrodynamics

    Get PDF
    Generalized hydrodynamics (GHD) is a large-scale theory for the dynamics of many-body integrable systems. It consists of an infinite set of conservation laws for quasi-particles traveling with effective ("dressed") velocities that depend on the local state. We show that these equations can be recast into a geometric dynamical problem. They are conservation equations with state-independent quasi-particle velocities, in a space equipped with a family of metrics, parametrized by the quasi-particles' type and speed, that depend on the local state. In the classical hard rod or soliton gas picture, these metrics measure the free length of space as perceived by quasi-particles, in the quantum picture, they weigh space with the density of states available to them. Using this geometric construction, we find a general solution to the initial value problem of GHD, in terms of a set of integral equations where time appears explicitly. These integral equations are solvable by iteration and provide an extremely efficient solution algorithm for GHD.Comment: 14 pages, 1 figure. v2: 16 pages, 2 figures, improved derivation, discussion, and numerical analysis. v3: 17 pages, small adjustments, accepted versio

    Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model

    Get PDF
    Using generalized hydrodynamics (GHD), we develop the Euler hydrodynamics of classical integrable field theory. Classical field GHD is based on a known formalism for Gibbs ensembles of classical fields, that resembles the thermodynamic Bethe ansatz of quantum models, which we extend to generalized Gibbs ensembles (GGEs). In general, GHD must take into account both solitonic and radiative modes of classical fields. We observe that the quasi-particle formulation of GHD remains valid for radiative modes, even though these do not display particle-like properties in their precise dynamics. We point out that because of a UV catastrophe similar to that of black body radiation, radiative modes suffer from divergences that restrict the set of finite-average observables; this set is larger for GGEs with higher conserved charges. We concentrate on the sinh-Gordon model, which only has radiative modes, and study transport in the domain-wall initial problem as well as Euler-scale correlations in GGEs. We confirm a variety of exact GHD predictions, including those coming from hydrodynamic projection theory, by comparing with Metropolis numerical evaluations.Comment: 41 pages, 9 figure

    Dam break problem for the focusing nonlinear Schr\"odinger equation and the generation of rogue waves

    Get PDF
    We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schr\"odinger (NLS) equation with the initial condition in the form of a rectangular barrier (a "box"). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains --- the dispersive dam break flows --- generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.Comment: 29 pages, 15 figures, major revisio

    Generalized hydrodynamic limit for the box-ball system

    Get PDF
    We deduce a generalized hydrodynamic limit for the box-ball system, which explains how the densities of solitons of different sizes evolve asymptotically under Euler space-time scaling. To describe the limiting soliton flow, we introduce a continuous state-space analogue of the soliton decomposition of Ferrari, Nguyen, Rolla and Wang (cf. the original work of Takahashi and Satsuma), namely we relate the densities of solitons of given sizes in space to corresponding densities on a scale of 'effective distances', where the dynamics are linear. For smooth initial conditions, we further show that the resulting evolution of the soliton densities in space can alternatively be characterised by a partial differential equation, which naturally links the time-derivatives of the soliton densities and the 'effective speeds' of solitons locally
    corecore