761 research outputs found

    Street View Motion-from-Structure-from-Motion

    Full text link
    We describe a structure-from-motion framework that handles “generalized ” cameras, such as moving rolling-shutter cameras, and works at an unprecedented scale— billions of images covering millions of linear kilometers of roads—by exploiting a good relative pose prior along vehicle paths. We exhibit a planet-scale, appearance-augmented point cloud constructed with our framework and demonstrate its practical use in correcting the pose of a street-level image collection. 1

    Solid-fluid transition in a granular shear flow

    Get PDF
    The rheology of a granular shear flow is studied in a quasi-2d rotating cylinder. Measurements are carried out near the midpoint along the length of the surface flowing layer where the flow is steady and non-accelerating. Streakline photography and image analysis are used to obtain particle velocities and positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the apparent viscosity (η\eta) variation with rms velocity (uu). In the fluid-like region above the depth corresponding to the transition point (higher rms velocities) there is a rapid increase in viscosity with decreasing rms velocity. Below the transition depth we find ηu1.5\eta \propto u^{-1.5} for all the different cases studied and the material approaches an amorphous solid-like state deep in the layer. The velocity distribution is Maxwellian above the transition point and a Poisson velocity distribution is obtained deep in the layer. The observed transition appears to be analogous to a glass transition.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Measuring the Angular Velocity of a Propeller with Video Camera Using Electronic Rolling Shutter

    Get PDF
    Noncontact measurement for rotational motion has advantages over the traditional method which measures rotational motion by means of installing some devices on the object, such as a rotary encoder. Cameras can be employed as remote monitoring or inspecting sensors to measure the angular velocity of a propeller because of their commonplace availability, simplicity, and potentially low cost. A defect of the measurement with cameras is to process the massive data generated by cameras. In order to reduce the collected data from the camera, a camera using ERS (electronic rolling shutter) is applied to measure angular velocities which are higher than the speed of the camera. The effect of rolling shutter can induce geometric distortion in the image, when the propeller rotates during capturing an image. In order to reveal the relationship between the angular velocity and the image distortion, a rotation model has been established. The proposed method was applied to measure the angular velocities of the two-blade propeller and the multiblade propeller. The experimental results showed that this method could detect the angular velocities which were higher than the camera speed, and the accuracy was acceptable

    Direct Sparse Odometry with Rolling Shutter

    Full text link
    Neglecting the effects of rolling-shutter cameras for visual odometry (VO) severely degrades accuracy and robustness. In this paper, we propose a novel direct monocular VO method that incorporates a rolling-shutter model. Our approach extends direct sparse odometry which performs direct bundle adjustment of a set of recent keyframe poses and the depths of a sparse set of image points. We estimate the velocity at each keyframe and impose a constant-velocity prior for the optimization. In this way, we obtain a near real-time, accurate direct VO method. Our approach achieves improved results on challenging rolling-shutter sequences over state-of-the-art global-shutter VO

    Towards High-Frequency Tracking and Fast Edge-Aware Optimization

    Full text link
    This dissertation advances the state of the art for AR/VR tracking systems by increasing the tracking frequency by orders of magnitude and proposes an efficient algorithm for the problem of edge-aware optimization. AR/VR is a natural way of interacting with computers, where the physical and digital worlds coexist. We are on the cusp of a radical change in how humans perform and interact with computing. Humans are sensitive to small misalignments between the real and the virtual world, and tracking at kilo-Hertz frequencies becomes essential. Current vision-based systems fall short, as their tracking frequency is implicitly limited by the frame-rate of the camera. This thesis presents a prototype system which can track at orders of magnitude higher than the state-of-the-art methods using multiple commodity cameras. The proposed system exploits characteristics of the camera traditionally considered as flaws, namely rolling shutter and radial distortion. The experimental evaluation shows the effectiveness of the method for various degrees of motion. Furthermore, edge-aware optimization is an indispensable tool in the computer vision arsenal for accurate filtering of depth-data and image-based rendering, which is increasingly being used for content creation and geometry processing for AR/VR. As applications increasingly demand higher resolution and speed, there exists a need to develop methods that scale accordingly. This dissertation proposes such an edge-aware optimization framework which is efficient, accurate, and algorithmically scales well, all of which are much desirable traits not found jointly in the state of the art. The experiments show the effectiveness of the framework in a multitude of computer vision tasks such as computational photography and stereo.Comment: PhD thesi

    Flux profile scanners for scattered high-energy electrons

    Full text link
    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.Comment: 22 pages, 17 figure
    corecore