5,747 research outputs found

    Workspace and Kinematic Analysis of the VERNE machine

    Get PDF
    This paper describes the workspace and the inverse and direct kinematic analysis of the VERNE machine, a serial/parallel 5-axis machine tool designed by Fatronik for IRCCyN. This machine is composed of a three-degree-of-freedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. This feature involves (i) a simultaneous combination of rotation and translation for the moving platform, which is balanced by the tilting table and (ii) workspace whose shape and volume vary as a function of the tool length. This paper summarizes results obtained in the context of the European projects NEXT ("Next Generation of Productions Systems")

    Kinematics and workspace analysis of a 3ppps parallel robot with u-shaped base

    Full text link
    This paper presents the kinematic analysis of the 3-PPPS parallel robot with an equilateral mobile platform and a U-shape base. The proposed design and appropriate selection of parameters allow to formulate simpler direct and inverse kinematics for the manipulator under study. The parallel singularities associated with the manipulator depend only on the orientation of the end-effector, and thus depend only on the orientation of the end effector. The quaternion parameters are used to represent the aspects, i.e. the singularity free regions of the workspace. A cylindrical algebraic decomposition is used to characterize the workspace and joint space with a low number of cells. The dis-criminant variety is obtained to describe the boundaries of each cell. With these simplifications, the 3-PPPS parallel robot with proposed design can be claimed as the simplest 6 DOF robot, which further makes it useful for the industrial applications

    Dynamics of the Orthoglide parallel robot

    Get PDF
    Recursive matrix relations for kinematics and dynamics of the Orthoglide parallel robot having three concurrent prismatic actuators are established in this paper. These are arranged according to the Cartesian coordinate system with fixed orientation, which means that the actuating directions are normal to each other. Three identical legs connecting to the moving platform are located on three planes being perpendicular to each other too. Knowing the position and the translation motion of the platform, we develop the inverse kinematics problem and determine the position, velocity and acceleration of each element of the robot. Further, the principle of virtual work is used in the inverse dynamic problem. Some matrix equations offer iterative expressions and graphs for the input forces and the powers of the three actuators

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods

    Kinematic Analysis of a Serial - Parallel Machine Tool: the VERNE machine

    Get PDF
    The paper derives the inverse and the forward kinematic equations of a serial - parallel 5-axis machine tool: the VERNE machine. This machine is composed of a three-degree-of-freedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. These legs are connected in a way that the combined effects of the three legs lead to an over-constrained mechanism with complex motion. This motion is defined as a simultaneous combination of rotation and translation. In this paper we propose symbolical methods that able to calculate all kinematic solutions and identify the acceptable one by adding analytical constraint on the disposition of legs of the parallel module
    • …
    corecore