364 research outputs found

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style

    Real-time people counting from depth imagery of crowded environments

    Get PDF

    DPDnet: A Robust People Detector using Deep Learning with an Overhead Depth Camera

    Full text link
    In this paper we propose a method based on deep learning that detects multiple people from a single overhead depth image with high reliability. Our neural network, called DPDnet, is based on two fully-convolutional encoder-decoder neural blocks based on residual layers. The Main Block takes a depth image as input and generates a pixel-wise confidence map, where each detected person in the image is represented by a Gaussian-like distribution. The refinement block combines the depth image and the output from the main block, to refine the confidence map. Both blocks are simultaneously trained end-to-end using depth images and head position labels. The experimental work shows that DPDNet outperforms state-of-the-art methods, with accuracies greater than 99% in three different publicly available datasets, without retraining not fine-tuning. In addition, the computational complexity of our proposal is independent of the number of people in the scene and runs in real time using conventional GPUs

    PEDESTRIAN DETECTION BY LASER SCANNING AND DEPTH IMAGERY

    Get PDF

    Skeletal Video Anomaly Detection using Deep Learning: Survey, Challenges and Future Directions

    Full text link
    The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.Comment: This work has been accepted by IEEE Transactions on Emerging Topics in Computational Intelligenc

    Lidar-based Gait Analysis and Activity Recognition in a 4D Surveillance System

    Get PDF
    This paper presents new approaches for gait and activity analysis based on data streams of a Rotating Multi Beam (RMB) Lidar sensor. The proposed algorithms are embedded into an integrated 4D vision and visualization system, which is able to analyze and interactively display real scenarios in natural outdoor environments with walking pedestrians. The main focus of the investigations are gait based person re-identification during tracking, and recognition of specific activity patterns such as bending, waving, making phone calls and checking the time looking at wristwatches. The descriptors for training and recognition are observed and extracted from realistic outdoor surveillance scenarios, where multiple pedestrians are walking in the field of interest following possibly intersecting trajectories, thus the observations might often be affected by occlusions or background noise. Since there is no public database available for such scenarios, we created and published a new Lidar-based outdoors gait and activity dataset on our website, that contains point cloud sequences of 28 different persons extracted and aggregated from 35 minutes-long measurements. The presented results confirm that both efficient gait-based identification and activity recognition is achievable in the sparse point clouds of a single RMB Lidar sensor. After extracting the people trajectories, we synthesized a free-viewpoint video, where moving avatar models follow the trajectories of the observed pedestrians in real time, ensuring that the leg movements of the animated avatars are synchronized with the real gait cycles observed in the Lidar stream

    Towards dense people detection with deep learning and depth images

    Get PDF
    This paper describes a novel DNN-based system, named PD3net, that detects multiple people from a single depth image, in real time. The proposed neural network processes a depth image and outputs a likelihood map in image coordinates, where each detection corresponds to a Gaussian-shaped local distribution, centered at each person?s head. This likelihood map encodes both the number of detected people as well as their position in the image, from which the 3D position can be computed. The proposed DNN includes spatially separated convolutions to increase performance, and runs in real-time with low budget GPUs. We use synthetic data for initially training the network, followed by fine tuning with a small amount of real data. This allows adapting the network to different scenarios without needing large and manually labeled image datasets. Due to that, the people detection system presented in this paper has numerous potential applications in different fields, such as capacity control, automatic video-surveillance, people or groups behavior analysis, healthcare or monitoring and assistance of elderly people in ambient assisted living environments. In addition, the use of depth information does not allow recognizing the identity of people in the scene, thus enabling their detection while preserving their privacy. The proposed DNN has been experimentally evaluated and compared with other state-of-the-art approaches, including both classical and DNN-based solutions, under a wide range of experimental conditions. The achieved results allows concluding that the proposed architecture and the training strategy are effective, and the network generalize to work with scenes different from those used during training. We also demonstrate that our proposal outperforms existing methods and can accurately detect people in scenes with significant occlusions.Ministerio de Economía y CompetitividadUniversidad de AlcaláAgencia Estatal de Investigació
    corecore