6,400 research outputs found

    Key Management Building Blocks for Wireless Sensor Networks

    Get PDF
    Cryptography is the means to ensure data confidentiality, integrity and authentication in wireless sensor networks (WSNs). To use cryptography effectively however, the cryptographic keys need to be managed properly. First of all, the necessary keys need to be distributed to the nodes before the nodes are deployed in the field, in such a way that any two or more nodes that need to communicate securely can establish a session key. Then, the session keys need to be refreshed from time to time to prevent birthday attacks. Finally, in case any of the nodes is found to be compromised, the key ring of the compromised node needs to be revoked and some or all of the compromised keys might need to be replaced. These processes, together with the policies and techniques needed to support them, are called key management. The facts that WSNs (1) are generally not tamper-resistant; (2) operate unattended; (3) communicate in an open medium; (4) have no fixed infrastructure and pre-configured topology; (5) have severe hardware and resource constraints, present unique challenges to key management. In this article, we explore techniques for meeting these challenges. What distinguishes our approach from a routine literature survey is that, instead of comparing various known schemes, we set out to identify the basic cryptographic principles, or building blocks that will allow practitioners to set up their own key management framework using these building blocks

    A Key Establishment Scheme for Mobile Wireless Sensor Networks Using Post-Deployment Knowledge

    Full text link
    Establishment of pairwise keys between sensor nodes in a sensor network is a difficult problem due to resource limitations of sensor nodes as well as vulnerability to physical captures of sensor nodes by the enemy. Public-key cryptosystems are not much suited for most resource-constrained sensor networks. Recently, elliptic curve cryptographic techniques show that public key cryptosystem is also feasible for resource-constrained sensor networks. However, most researchers accept that the symmetric key cryptosystems are viable options for resource-constrained sensor networks. In this paper, we first develop a basic principle to address the key pre-distribution problem in mobile sensor networks. Then, using this developed basic principle, we propose a scheme which takes the advantage of the post-deployment knowledge. Our scheme is a modified version of the key prioritization technique proposed by Liu and Ning. Our improved scheme provides reasonable network connectivity and security. Moreover, the proposed scheme works for any deployment topology.Comment: Published in International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.4, July 201

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case

    A resilient key predistribution scheme for multiphase wireless sensor networks

    Get PDF
    In wireless sensor networks, sensor nodes eventually die due to battery depletion. Wireless sensor networks (WSNs) in which new nodes are periodically redeployed with certain intervals, called generations, to replace the dead nodes are called multi-phase wireless sensor networks. In the literature, there are several key predistribution schemes proposed for secure operation of WSNs. However, these schemes are designed for single phase networks which are not resilient against continuous node capture attacks; even under temporary attacks on the network, the harm caused by the attacker does not heal in time. However, the periodic deployments in multi-phase sensor networks could be utilized to improve the resiliency of the WSNs by deploying nodes with fresh keys. In the literature, there is limited work done in this area. In this paper, we propose a key predistribution scheme for multi-phase wireless sensor networks which is highly resilient under node capture attacks. In our scheme, called RGM (random generation material) key predistribution scheme, each generation of deployment has its own random keying material and pairwise keys are established between node pairs of particular generations. These keys are specific to these generations. Therefore, a captured node cannot be abused to obtain keys of other generations. We compare the performance of our RGM scheme with a well-known multi-phase key predistribution scheme and showed that RGM achieves up to three-fold more resiliency. Even under heavy attacks, our scheme's resiliency performance is 50% better in steady state

    Using combined keying materials for key distribution in wireless sensor networks

    Get PDF
    In this paper, we propose a probabilistic key predistribution scheme for wireless sensor networks that increases connectivity of the basic scheme while keeping sizes of keyring and key pool fixed. We introduce the concept of XORed key, which is the bitwise XOR of two regular (a.k.a. single) keys. Sensor nodes are preloaded with a mixture of single and XORed keys. Nodes establish secure links by using shared XORed keys whenever possible. If node pairs do not have any shared XORed or single keys, they transfer keys from their secure neighbors in a couple of ways, and use them to match with their XORed keys. In this way, the probability of securing links, i.e. local connectivity, increases. The decision of which key is to be transferred from which node is given based on local information at the hand of the nodes. We aim to control the resilience of the network against node capture attacks by using XORed keys since an attacker has to know either both single key operands or the XORed key itself. Simulations show that our scheme is up to 50% more connected as compared to basic scheme. Also it has better resilience performance at the beginning of a node capture attack. When it starts to deteriorate, the difference between the resilience of our proposed scheme and basic scheme is not greater than 5%

    Quantum cryptography: a practical information security perspective

    Get PDF
    Quantum Key Exchange (QKE, also known as Quantum Key Distribution or QKD) allows communicating parties to securely establish cryptographic keys. It is a well-established fact that all QKE protocols require that the parties have access to an authentic channel. Without this authenticated link, QKE is vulnerable to man-in-the-middle attacks. Overlooking this fact results in exaggerated claims and/or false expectations about the potential impact of QKE. In this paper we present a systematic comparison of QKE with traditional key establishment protocols in realistic secure communication systems.Comment: 5 pages, new title, published version, minor changes onl

    Hierarchical Grid-Based Pairwise Key Pre-distribution in Wireless Sensor Networks

    Full text link
    The security of wireless sensor networks is an active topic of research where both symmetric and asymmetric key cryptography issues have been studied. Due to their computational feasibility on typical sensor nodes, symmetric key algorithms that use the same key to encrypt and decrypt messages have been intensively studied and perfectly deployed in such environment. Because of the wireless sensor's limited infrastructure, the bottleneck challenge for deploying these algorithms is the key distribution. For the same reason of resources restriction, key distribution mechanisms which are used in traditional wireless networks are not efficient for sensor networks. To overcome the key distribution problem, several key pre-distribution algorithms and techniques that assign keys or keying material for the networks nodes in an offline phase have been introduced recently. In this paper, we introduce a supplemental distribution technique based on the communication pattern and deployment knowledge modeling. Our technique is based on the hierarchical grid deployment. For granting a proportional security level with number of dependent sensors, we use different polynomials in different orders with different weights. In seek of our proposed work's value, we provide a detailed analysis on the used resources, resulting security, resiliency, and connectivity compared with other related works.Comment: 13 pages, 9 figures, 2 tables, to appear in the International Journal of Networks and Securit
    corecore