43,701 research outputs found

    Practical Fine-grained Privilege Separation in Multithreaded Applications

    Full text link
    An inherent security limitation with the classic multithreaded programming model is that all the threads share the same address space and, therefore, are implicitly assumed to be mutually trusted. This assumption, however, does not take into consideration of many modern multithreaded applications that involve multiple principals which do not fully trust each other. It remains challenging to retrofit the classic multithreaded programming model so that the security and privilege separation in multi-principal applications can be resolved. This paper proposes ARBITER, a run-time system and a set of security primitives, aimed at fine-grained and data-centric privilege separation in multithreaded applications. While enforcing effective isolation among principals, ARBITER still allows flexible sharing and communication between threads so that the multithreaded programming paradigm can be preserved. To realize controlled sharing in a fine-grained manner, we created a novel abstraction named ARBITER Secure Memory Segment (ASMS) and corresponding OS support. Programmers express security policies by labeling data and principals via ARBITER's API following a unified model. We ported a widely-used, in-memory database application (memcached) to ARBITER system, changing only around 100 LOC. Experiments indicate that only an average runtime overhead of 5.6% is induced to this security enhanced version of application

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    Distributed operating systems

    Get PDF
    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups.\ud \ud In this paper, an overview of recent research in distributed systems is given. In turn, the paper discusses overall system structure, protection issues, file system designs, problems and solutions for fault tolerance and a mechanism that is rapidly becoming very important for efficient distributed systems design: hints.\ud \ud An attempt was made to provide sufficient references to interesting research projects for the reader to find material for more detailed study

    ORACLE DATABASE SECURITY

    Get PDF
    This paper presents some security issues, namely security database system level, data level security, user-level security, user management, resource management and password management. Security is a constant concern in the design and database development. Usually, there are no concerns about the existence of security, but rather how large it should be. A typically DBMS has several levels of security, in addition to those offered by the operating system or network. Typically, a DBMS has user accounts that require a login password to be authenticated to access the data.data security, password administration, Oracle HTTP Server, OracleAS, access control
    • …
    corecore