19 research outputs found

    Secret Key Agreement under Discussion Rate Constraints

    Full text link
    For the multiterminal secret key agreement problem, new single-letter lower bounds are obtained on the public discussion rate required to achieve any given secret key rate below the secrecy capacity. The results apply to general source model without helpers or wiretapper's side information but can be strengthened for hypergraphical sources. In particular, for the pairwise independent network, the results give rise to a complete characterization of the maximum secret key rate achievable under a constraint on the total discussion rate

    Compressed Secret Key Agreement: Maximizing Multivariate Mutual Information Per Bit

    Full text link
    The multiterminal secret key agreement problem by public discussion is formulated with an additional source compression step where, prior to the public discussion phase, users independently compress their private sources to filter out strongly correlated components for generating a common secret key. The objective is to maximize the achievable key rate as a function of the joint entropy of the compressed sources. Since the maximum achievable key rate captures the total amount of information mutual to the compressed sources, an optimal compression scheme essentially maximizes the multivariate mutual information per bit of randomness of the private sources, and can therefore be viewed more generally as a dimension reduction technique. Single-letter lower and upper bounds on the maximum achievable key rate are derived for the general source model, and an explicit polynomial-time computable formula is obtained for the pairwise independent network model. In particular, the converse results and the upper bounds are obtained from those of the related secret key agreement problem with rate-limited discussion. A precise duality is shown for the two-user case with one-way discussion, and such duality is extended to obtain the desired converse results in the multi-user case. In addition to posing new challenges in information processing and dimension reduction, the compressed secret key agreement problem helps shed new light on resolving the difficult problem of secret key agreement with rate-limited discussion, by offering a more structured achieving scheme and some simpler conjectures to prove

    Communication Complexity of the Secret Key Agreement in Algorithmic Information Theory

    Full text link
    It is known that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y is equal to the length of the longest shared secret key that two parties can establish via a probabilistic protocol with interaction on a public channel, assuming that the parties hold as their inputs x and y respectively. We determine the worst-case communication complexity of this problem for the setting where the parties can use private sources of random bits. We show that for some x, y the communication complexity of the secret key agreement does not decrease even if the parties have to agree on a secret key whose size is much smaller than the mutual information between x and y. On the other hand, we discuss examples of x, y such that the communication complexity of the protocol declines gradually with the size of the derived secret key. The proof of the main result uses spectral properties of appropriate graphs and the expander mixing lemma, as well as information theoretic techniques.Comment: 33 pages, 6 figures. v3: the full version of the MFCS 2020 pape
    corecore