3 research outputs found

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements

    Key Establishment for Layered Group-based Wireless Sensor Networks

    No full text
    Establishing pairwise keys for sensors is crucial to secure communications in Wireless Sensor Networks (WSNs). Several key pre-distribution schemes have been proposed to establish pairwise keys, but they are not scalable and suffer from a dramatic degradation of security when the number of compromised sensor exceeds a threshold. In this paper, we propose a Layered Group-based Key Establishment (LGKE) scheme, in which a logic top layer ensures the scalability through an Exclusion Basic System (EBS) technique while a logic low layer adopts a group-based key preload scheme to ensure the security. The security analysis and quantitative evaluation show the superiority of LGKE with regard to scalability, resilience, robustness and communication overhead
    corecore