3 research outputs found

    xFraud: Explainable Fraud Transaction Detection

    Full text link
    At online retail platforms, it is crucial to actively detect the risks of transactions to improve customer experience and minimize financial loss. In this work, we propose xFraud, an explainable fraud transaction prediction framework which is mainly composed of a detector and an explainer. The xFraud detector can effectively and efficiently predict the legitimacy of incoming transactions. Specifically, it utilizes a heterogeneous graph neural network to learn expressive representations from the informative heterogeneously typed entities in the transaction logs. The explainer in xFraud can generate meaningful and human-understandable explanations from graphs to facilitate further processes in the business unit. In our experiments with xFraud on real transaction networks with up to 1.1 billion nodes and 3.7 billion edges, xFraud is able to outperform various baseline models in many evaluation metrics while remaining scalable in distributed settings. In addition, we show that xFraud explainer can generate reasonable explanations to significantly assist the business analysis via both quantitative and qualitative evaluations.Comment: This is the extended version of a full paper to appear in PVLDB 15 (3) (VLDB 2022

    Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters

    Full text link
    Graph Neural Networks (GNNs) have been widely applied to fraud detection problems in recent years, revealing the suspiciousness of nodes by aggregating their neighborhood information via different relations. However, few prior works have noticed the camouflage behavior of fraudsters, which could hamper the performance of GNN-based fraud detectors during the aggregation process. In this paper, we introduce two types of camouflages based on recent empirical studies, i.e., the feature camouflage and the relation camouflage. Existing GNNs have not addressed these two camouflages, which results in their poor performance in fraud detection problems. Alternatively, we propose a new model named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation process with three unique modules against camouflages. Concretely, we first devise a label-aware similarity measure to find informative neighboring nodes. Then, we leverage reinforcement learning (RL) to find the optimal amounts of neighbors to be selected. Finally, the selected neighbors across different relations are aggregated together. Comprehensive experiments on two real-world fraud datasets demonstrate the effectiveness of the RL algorithm. The proposed CARE-GNN also outperforms state-of-the-art GNNs and GNN-based fraud detectors. We integrate all GNN-based fraud detectors as an opensource toolbox: https://github.com/safe-graph/DGFraud. The CARE-GNN code and datasets are available at https://github.com/YingtongDou/CARE-GNN.Comment: Accepted by CIKM 202
    corecore