3,373 research outputs found

    Incremental Kernel Mapping Algorithms for Scalable Recommender Systems

    No full text
    Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would like a given item. Kernel Mapping Recommender (KMR)system algorithms have been proposed, which offer state-of-the-art performance. One potential drawback of the KMR algorithms is that the training is done in one step and hence they cannot accommodate the incremental update with the arrival of new data making them unsuitable for the dynamic environments. From this line of research, we propose a new heuristic, which can build the model incrementally without retraining the whole model from scratch when new data (item or user) are added to the recommender system dataset. Furthermore, we proposed a novel perceptron type algorithm, which is a fast incremental algorithm for building the model that maintains a good level of accuracy and scales well with the data. We show empirically over two datasets that the proposed algorithms give quite accurate results while providing significant computation savings

    Joint Deep Modeling of Users and Items Using Reviews for Recommendation

    Full text link
    A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.Comment: WSDM 201

    Scalable and interpretable product recommendations via overlapping co-clustering

    Full text link
    We consider the problem of generating interpretable recommendations by identifying overlapping co-clusters of clients and products, based only on positive or implicit feedback. Our approach is applicable on very large datasets because it exhibits almost linear complexity in the input examples and the number of co-clusters. We show, both on real industrial data and on publicly available datasets, that the recommendation accuracy of our algorithm is competitive to that of state-of-art matrix factorization techniques. In addition, our technique has the advantage of offering recommendations that are textually and visually interpretable. Finally, we examine how to implement our technique efficiently on Graphical Processing Units (GPUs).Comment: In IEEE International Conference on Data Engineering (ICDE) 201
    corecore