41 research outputs found

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ı≜−1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The binary non-linear Kerdock codes are Gray images of ℤ_4-linear Kerdock codes of length N =2^m . We show that exponentiating ı=−√-1 by these ℤ_4-valued codewords produces stabilizer states, which are the common eigenvectors of maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the proof of the classical weight distribution of Kerdock codes. Next, we partition stabilizer states into N +1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute the associated MCS. This automorphism group, represented as symplectic matrices, is isomorphic to the projective special linear group PSL(2,N) and forms a unitary 2-design. The design described here was originally discovered by Cleve et al. (2016), but the connection to classical codes is new. This significantly simplifies the description of the design and its translation to circuits

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The binary non-linear Kerdock codes are Gray images of ℤ_4-linear Kerdock codes of length N =2^m . We show that exponentiating ı=−√-1 by these ℤ_4-valued codewords produces stabilizer states, which are the common eigenvectors of maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the proof of the classical weight distribution of Kerdock codes. Next, we partition stabilizer states into N +1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute the associated MCS. This automorphism group, represented as symplectic matrices, is isomorphic to the projective special linear group PSL(2,N) and forms a unitary 2-design. The design described here was originally discovered by Cleve et al. (2016), but the connection to classical codes is new. This significantly simplifies the description of the design and its translation to circuits

    On block coherence of frames

    Get PDF
    Block coherence of matrices plays an important role in analyzing the performance of block compressed sensing recovery algorithms (Bajwa and Mixon, 2012). In this paper, we characterize two block coherence metrics: worst-case and average block coherence. First, we present lower bounds on worst-case block coherence, in both the general case and also when the matrix is constrained to be a union of orthobases. We then present deterministic matrix constructions based upon Kronecker products which obtain these lower bounds. We also characterize the worst-case block coherence of random subspaces. Finally, we present a flipping algorithm that can improve the average block coherence of a matrix, while maintaining the worst-case block coherence of the original matrix. We provide numerical examples which demonstrate that our proposed deterministic matrix construction performs well in block compressed sensing

    Symplectic spreads, planar functions and mutually unbiased bases

    Full text link
    In this paper we give explicit descriptions of complete sets of mutually unbiased bases (MUBs) and orthogonal decompositions of special Lie algebras sln(C)sl_n(\mathbb{C}) obtained from commutative and symplectic semifields, and from some other non-semifield symplectic spreads. Relations between various constructions are also studied. We show that the automorphism group of a complete set of MUBs is isomorphic to the automorphism group of the corresponding orthogonal decomposition of the Lie algebra sln(C)sl_n(\mathbb{C}). In the case of symplectic spreads this automorphism group is determined by the automorphism group of the spread. By using the new notion of pseudo-planar functions over fields of characteristic two we give new explicit constructions of complete sets of MUBs.Comment: 20 page

    Constructions of Mutually Unbiased Bases

    Full text link
    Two orthonormal bases B and B' of a d-dimensional complex inner-product space are called mutually unbiased if and only if ||^2=1/d holds for all b in B and b' in B'. The size of any set containing (pairwise) mutually unbiased bases of C^d cannot exceed d+1. If d is a power of a prime, then extremal sets containing d+1 mutually unbiased bases are known to exist. We give a simplified proof of this fact based on the estimation of exponential sums. We discuss conjectures and open problems concerning the maximal number of mutually unbiased bases for arbitrary dimensions.Comment: 8 pages late

    Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements

    Get PDF
    We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10, and 12, for example, where no complete sets of mutually unbiased bases have thus far been found.Comment: 28 pages, to appear in J. Math. Phy
    corecore