36 research outputs found

    A numerical method for computing unsteady 2-D boundary layer flows

    Get PDF
    A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results

    1991 Summer Study Program in Geophysical Fluid Dynamics : patterns in fluid flow

    Get PDF
    The GFD program in 1991 focused on pattern forming processes in physics and geophysics. The pricipallecturer, Stephan Fauve, discussed a variety of systems, including our old favorite, Rayleigh-B茅nard convection, but passing on to exotic examples such as vertically vibrated granular layers. Fauve's lectures emphasize a unified theoretical viewpoint based on symmetry arguments. Patterns produced by instabilties can be described by amplitude equations, whose form can be deduced by symmetry arguments, rather than the asymptotic expansions that have been the staple of past Summer GFD Programs. The amplitude equations are far simpler than the complete equations of motion, and symetry arguments are easier than asymptotic expansions. Symmetry arguments also explain why diverse systems are often described by the same amplitude equation. Even for granular layers, where there is not a universaly accepted continuum description, the appropnate amplitude equation can often be found using symmetry arguments and then compared with experiment. Our second speaker, Daniel Rothan, surveyed the state of the art in lattice gas computations. His lectures illustrate the great utility of these methods in simulating the flow of complex multiphase fluids, particularly at low Reynolds numbers. The lattice gas simulations reveal a complicated phenomenology much of which awaits analytic exploration. The fellowship lectures cover broad ground and reflect the interests of the staff members associated with the program. They range from the formation of sand dunes, though the theory of lattice gases, and on to two dimensional-turbulence and convection on planetary scales. Readers desiring to quote from these report should seek the permission of the authors (a partial list of electronic mail addresses is included on page v). As in previous years, these reports are extensively reworked for publication or appear as chapters in doctoral theses. The task of assembling the volume in 1991 was at first faciltated by our newly acquired computers, only to be complicated by hurricane Bob which severed electric power to Walsh Cottage in the final hectic days of the Summer.Funding was provided by the National Science Foundation through Grant No. OCE 8901012

    Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    Get PDF
    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments

    Rotating convection : 1995 Summer Study Program in Geophysical Fluid Dynamics

    Get PDF
    The 1995 program in Geophysical Fluid Dynamics addressed "Rotating Convection," with particular emphasis on high-Rayleigh-number convection and on convection in the ocean.Funding was provided by the National Science Foundation under Grant No. OCE-8901012

    The 1982 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers

    Space Processing Applications Rocket (SPAR) project: SPAR 10

    Get PDF
    The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R

    An oscillatory turbulent boundary layer in an adverse pressure gradiant.

    Get PDF
    PhDA turbulent boundary layer experiencing a time mean adverse pressure gradient and a controllable travelling wave periodic oscillation, was examined experimentally. An open return low speed wind-tunnel with a semi-open working section was used for this purpose, with oscillating flaps at its exit inducing the oscillations. The boundary layer on a specially designed "S" shaped model of chord 2m and thickness/ chord ratio of3.6%was investigated, for a range of frequencies from 1 to 6Hz, and amplitudes of the order of 10% of the time mean freestream velocity. The turbulent boundary layer evolved naturally around x/c= . 23, and measurements were taken for a Reynolds number Rec=3401. The effect of flap amplitude was examined for a range of amplitudes, from 2 to 4 inches. Unsteady velocity and pressure quantities were measured using Hot-wire techniques and pressure transducers, with the aid of a digital sampling system. Boundary layer mean values, were found to be inv媒riant with both frequency and amplitude of oscillation, while unsteady components were predominantly affected by frequency and downstream position but not amplitude. Unsteady velocities in the boundary layer lagged the freestream oscillations by as much as 1500 in some cases, while amplitudes exceeded freestream values by as much as 70

    The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows

    Get PDF
    This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations

    Aeronautical Engineering, A Continuing Bibliography With Indexes

    Get PDF
    This bibliography lists 693 reports, articles and other documents introduced into the NASA scientific and technical information system in September 1984
    corecore