6,022 research outputs found

    Identification and adaptive control of a high-contrast focal plane wavefront correction system

    Full text link
    All coronagraphic instruments for exoplanet high-contrast imaging need wavefront correction systems to reject optical aberrations and create sufficiently dark holes. Since the most efficient wavefront correction algorithms (controllers and estimators) are usually model-based, the modeling accuracy of the system influences the ultimate wavefront correction performance. Currently, wavefront correction systems are typically approximated as linear systems using Fourier optics. However, the Fourier optics model is usually biased due to inaccuracies in the layout measurements, the imperfect diagnoses of inherent optical aberrations, and a lack of knowledge of the deformable mirrors (actuator gains and influence functions). Moreover, the telescope optical system varies over time because of instrument instabilities and environmental effects. In this paper, we present an expectation-maximization (E-M) approach for identifying and real-time adapting the linear telescope model from data. By iterating between the E-step (a Kalman filter and a Rauch smoother) and the M-step (analytical or gradient-based optimization), the algorithm is able to recover the system even if the model depends on the electric fields, which are unmeasurable hidden variables. Simulations and experiments in Princeton's High Contrast Imaging Lab demonstrate that this algorithm improves the model accuracy and increases the efficiency and speed of the wavefront correction

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems
    • …
    corecore