12 research outputs found

    Scalable Text Mining with Sparse Generative Models

    Get PDF
    The information age has brought a deluge of data. Much of this is in text form, insurmountable in scope for humans and incomprehensible in structure for computers. Text mining is an expanding field of research that seeks to utilize the information contained in vast document collections. General data mining methods based on machine learning face challenges with the scale of text data, posing a need for scalable text mining methods. This thesis proposes a solution to scalable text mining: generative models combined with sparse computation. A unifying formalization for generative text models is defined, bringing together research traditions that have used formally equivalent models, but ignored parallel developments. This framework allows the use of methods developed in different processing tasks such as retrieval and classification, yielding effective solutions across different text mining tasks. Sparse computation using inverted indices is proposed for inference on probabilistic models. This reduces the computational complexity of the common text mining operations according to sparsity, yielding probabilistic models with the scalability of modern search engines. The proposed combination provides sparse generative models: a solution for text mining that is general, effective, and scalable. Extensive experimentation on text classification and ranked retrieval datasets are conducted, showing that the proposed solution matches or outperforms the leading task-specific methods in effectiveness, with a order of magnitude decrease in classification times for Wikipedia article categorization with a million classes. The developed methods were further applied in two 2014 Kaggle data mining prize competitions with over a hundred competing teams, earning first and second places

    K-Nearest Oracles Borderline Dynamic Classifier Ensemble Selection

    Full text link
    Dynamic Ensemble Selection (DES) techniques aim to select locally competent classifiers for the classification of each new test sample. Most DES techniques estimate the competence of classifiers using a given criterion over the region of competence of the test sample (its the nearest neighbors in the validation set). The K-Nearest Oracles Eliminate (KNORA-E) DES selects all classifiers that correctly classify all samples in the region of competence of the test sample, if such classifier exists, otherwise, it removes from the region of competence the sample that is furthest from the test sample, and the process repeats. When the region of competence has samples of different classes, KNORA-E can reduce the region of competence in such a way that only samples of a single class remain in the region of competence, leading to the selection of locally incompetent classifiers that classify all samples in the region of competence as being from the same class. In this paper, we propose two DES techniques: K-Nearest Oracles Borderline (KNORA-B) and K-Nearest Oracles Borderline Imbalanced (KNORA-BI). KNORA-B is a DES technique based on KNORA-E that reduces the region of competence but maintains at least one sample from each class that is in the original region of competence. KNORA-BI is a variation of KNORA-B for imbalance datasets that reduces the region of competence but maintains at least one minority class sample if there is any in the original region of competence. Experiments are conducted comparing the proposed techniques with 19 DES techniques from the literature using 40 datasets. The results show that the proposed techniques achieved interesting results, with KNORA-BI outperforming state-of-art techniques.Comment: Paper accepted for publication on IJCNN 201

    Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization.

    Get PDF
    Maps of infectious disease-charting spatial variations in the force of infection, degree of endemicity and the burden on human health-provide an essential evidence base to support planning towards global health targets. Contemporary disease mapping efforts have embraced statistical modelling approaches to properly acknowledge uncertainties in both the available measurements and their spatial interpolation. The most common such approach is Gaussian process regression, a mathematical framework composed of two components: a mean function harnessing the predictive power of multiple independent variables, and a covariance function yielding spatio-temporal shrinkage against residual variation from the mean. Though many techniques have been developed to improve the flexibility and fitting of the covariance function, models for the mean function have typically been restricted to simple linear terms. For infectious diseases, known to be driven by complex interactions between environmental and socio-economic factors, improved modelling of the mean function can greatly boost predictive power. Here, we present an ensemble approach based on stacked generalization that allows for multiple nonlinear algorithmic mean functions to be jointly embedded within the Gaussian process framework. We apply this method to mapping Plasmodium falciparum prevalence data in sub-Saharan Africa and show that the generalized ensemble approach markedly outperforms any individual method

    Classifier chains: A review and perspectives

    Get PDF
    The family of methods collectively known as classifier chains has become a popular approach to multi-label learning problems. This approach involves chaining together off-the-shelf binary classifiers in a directed structure, such that individual label predictions become features for other classifiers. Such methods have proved flexible and effective and have obtained state-of-the-art empirical performance across many datasets and multi-label evaluation metrics. This performance led to further studies of the underlying mechanism and efficacy, and investigation into how it could be improved. In the recent decade, numerous studies have explored the theoretical underpinnings of classifier chains, and many improvements have been made to the training and inference procedures, such that this method remains among the best options for multi-label learning. Given this past and ongoing interest, which covers a broad range of applications and research themes, the goal of this work is to provide a review of classifier chains, a survey of the techniques and extensions provided in the literature, as well as perspectives for this approach in the domain of multi-label classification in the future. We conclude positively, with a number of recommendations for researchers and practitioners, as well as outlining key issues for future research

    Second Order PAC-Bayesian Bounds for the Weighted Majority Vote

    Full text link
    We present a novel analysis of the expected risk of weighted majority vote in multiclass classification. The analysis takes correlation of predictions by ensemble members into account and provides a bound that is amenable to efficient minimization, which yields improved weighting for the majority vote. We also provide a specialized version of our bound for binary classification, which allows to exploit additional unlabeled data for tighter risk estimation. In experiments, we apply the bound to improve weighting of trees in random forests and show that, in contrast to the commonly used first order bound, minimization of the new bound typically does not lead to degradation of the test error of the ensemble
    corecore