24 research outputs found

    A Framework for Achieving KDM-CCA Secure Public-Key Encryption

    Get PDF
    We propose a framework for achieving a public-key encryption (PKE) scheme that satisfies key dependent message security against chosen ciphertext attacks (KDM-CCA security) based on projective hash function. Our framework can be instantiated under the decisional diffie-hellman (DDH), quadratic residuosity (QR), and decisional composite residuosity (DCR) assumptions. The constructed schemes are KDM-CCA secure with respect to affine functions and compatible with the amplification method shown by Applebaum (EUROCRYPT 2011). Thus, they lead to PKE schemes satisfying KDM-CCA security for all functions computable by a-priori bounded size circuits. They are the first PKE schemes satisfying such a security notion in the standard model using neither non-interactive zero knowledge proof nor bilinear pairing. The above framework based on projective hash function captures only KDM-CCA security in the single user setting. However, we can prove the KDM-CCA security in the multi user setting of our concrete instantiations by using their algebraic structures explicitly. Especially, we prove that our DDH based scheme satisfies KDM-CCA security in the multi user setting with the same parameter setting as in the single user setting

    Algebraic Frameworks for Cryptographic Primitives

    Full text link
    A fundamental goal in theoretical cryptography is to identify the conceptually simplest abstractions that generically imply a collection of other cryptographic primitives. For symmetric-key primitives, this goal has been accomplished by showing that one-way functions are necessary and sufficient to realize primitives ranging from symmetric-key encryption to digital signatures. By contrast, for asymmetric primitives, we have no (known) unifying simple abstraction even for a few of its most basic objects. Moreover, even for public-key encryption (PKE) alone, we have no unifying abstraction that all known constructions follow. The fact that almost all known PKE constructions exploit some algebraic structure suggests considering abstractions that have some basic algebraic properties, irrespective of their concrete instantiation. We make progress on the aforementioned fundamental goal by identifying simple and useful cryptographic abstractions and showing that they imply a variety of asymmetric primitives. Our general approach is to augment symmetric abstractions with algebraic structure that turns out to be sufficient for PKE and much more, thus yielding a “bridge” between symmetric and asymmetric primitives. We introduce two algebraic frameworks that capture almost all concrete instantiations of (asymmetric) cryptographic primitives, and we also demonstrate their applicability by showing their cryptographic implications. Therefore, rather than manually building different cryptosystems from a new assumption, one only needs to build one (or more) of our simple structured primitives, and a whole host of cryptosystems immediately follows.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166137/1/alamati_1.pd

    KDM Security for Identity-Based Encryption: Constructions and Separations

    Get PDF
    For encryption schemes, key dependent message (KDM) security requires that ciphertexts preserve secrecy even when the messages to be encrypted depend on the secret keys. While KDM security has been extensively studied for public-key encryption (PKE), it receives much less attention in the setting of identity-based encryption (IBE). In this work, we focus on the KDM security for IBE. Our results are threefold. We first propose a generic approach to transfer the KDM security results (both positive and negative) from PKE to IBE. At the heart of our approach is a neat structure-mirroring PKE-to-IBE transformation based on indistinguishability obfuscation and puncturable PRFs, which establishes a connection between PKE and IBE in general. However, the obtained results are restricted to selective-identity sense. We then concentrate on results in adaptive-identity sense. On the positive side, we present two constructions that achieve KDM security in the adaptive-identity sense for the first time. One is built from identity-based hash proof system (IB-HPS) with homomorphic property, which indicates that the IBE schemes of Gentry (Eurocrypt 2006), Coron (DCC 2009), Chow et al. (CCS 2010) are actually KDM-secure in the single-key setting. The other is built from indistinguishability obfuscation and a new notion named puncturable unique signature, which is bounded KDM-secure in the single-key setting. On the negative side, we separate CPA/CCA security from nn-circular security (which is a prototypical case of KDM security) for IBE by giving a counterexample based on differing-inputs obfuscation and a new notion named puncturable IBE. We further propose a general framework for generating nn-circular security counterexamples in identity-based setting, which might be of independent interest

    Bounded KDM Security from iO and OWF

    Get PDF
    To date, all constructions in the standard model (i.e., without random oracles) of Bounded Key-Dependent Message (KDM) secure (or even just circularly-secure) encryption schemes rely on specific assumptions (LWE, DDH, QR or DCR); all of these assumptions are known to imply the existence of collision-resistant hash functions. In this work, we demonstrate the existence of bounded KDM secure encryption assuming indistinguishability obfsucation for P/polyP/poly and just one-way functions. Relying on the recent result of Asharov and Segev (STOC\u2715), this yields the first construction of a Bounded KDM secure (or even circularly secure) encryption scheme from an assumption that provably does not imply collision-resistant hash functions w.r.t. black-box constructions. Combining this with prior constructions, we show how to augment this Bounded KDM scheme into a Bounded CCA2-KDM scheme

    Naor-Yung paradigm with shared randomness and applications

    Get PDF
    The Naor-Yung paradigm (Naor and Yung, STOC’90) allows to generically boost security under chosen-plaintext attacks (CPA) to security against chosen-ciphertext attacks (CCA) for public-key encryption (PKE) schemes. The main idea is to encrypt the plaintext twice (under independent public keys), and to append a non-interactive zero-knowledge (NIZK) proof that the two ciphertexts indeed encrypt the same message. Later work by Camenisch, Chandran, and Shoup (Eurocrypt’09) and Naor and Segev (Crypto’09 and SIAM J. Comput.’12) established that the very same techniques can also be used in the settings of key-dependent message (KDM) and key-leakage attacks (respectively). In this paper we study the conditions under which the two ciphertexts in the Naor-Yung construction can share the same random coins. We find that this is possible, provided that the underlying PKE scheme meets an additional simple property. The motivation for re-using the same random coins is that this allows to design much more efficient NIZK proofs. We showcase such an improvement in the random oracle model, under standard complexity assumptions including Decisional Diffie-Hellman, Quadratic Residuosity, and Subset Sum. The length of the resulting ciphertexts is reduced by 50%, yielding truly efficient PKE schemes achieving CCA security under KDM and key-leakage attacks. As an additional contribution, we design the first PKE scheme whose CPA security under KDM attacks can be directly reduced to (low-density instances of) the Subset Sum assumption. The scheme supports keydependent messages computed via any affine function of the secret ke

    On Generic Constructions of Circularly-Secure, Leakage-Resilient Public-Key Encryption Schemes

    Get PDF
    Abstract. We propose generic constructions of public-key encryption schemes, satisfying key- dependent message (KDM) security for projections and different forms of key-leakage resilience, from CPA-secure private key encryption schemes with two main abstract properties: (1) additive homomorphism with respect to both messages and randomness, and (2) reproducibility, providing a means for reusing encryption randomness across independent secret keys. More precisely, our construction transforms a private-key scheme with the stated properties (and one more mild condition) into a public-key one, providing: - n-KDM-projection security, an extension of circular security, where the adversary may also ask for encryptions of negated secret key bits; – a (1-o(1)) resilience rate in the bounded-memory leakage model of Akavia et al. (TCC 2009); and – Auxiliary-input security against subexponentially-hard functions. We introduce homomorphic weak pseudorandom functions, a homomorphic version of the weak PRFs proposed by Naor and Reingold (FOCS ’95) and use them to realize our base encryption scheme. We obtain homomorphic weak PRFs under assumptions including subgroup indistinguishability (implied, in particular, by QR and DCR) and homomorphic hash-proof systems (HHPS). As corollaries of our results, we obtain (1) a projection-secure encryption scheme (as well as a scheme with a (1-o(1)) resilience rate) based solely on the HHPS assumption, and (2) a unifying approach explaining the results of Boneh et al (CRYPTO ’08) and Brakerski and Goldwasser (CRYPTO ’10). Finally, by observing that Applebaum’s KDM amplification method (EUROCRYPT ’11) preserves both types of leakage resilience, we obtain schemes providing at the same time high leakage resilience and KDM security against any fixed polynomial-sized circuit family

    New Smooth Projective Hashing For Oblivious Transfer

    Get PDF
    Oblivious transfer is an important tool against malicious cloud server providers. Halevi-Kalai OT, which is based on smooth projective hash(SPH), is a famous and the most efficient framework for 11-out-of-22 oblivious transfer (\mbox{OT}^{2}_{1}) against malicious adversaries in plain model. A natural question however, which so far has not been answered, is whether its security level can be improved, i.e., whether it can be made fully-simulatable. In this paper, we press a new SPH variant, which enables a positive answer to above question. In more details, it even makes fully-simulatable \mbox{OT}^{n}_{t} (n,t∈Nn,t\in \mathbb{N} and n>tn>t) possible. We instantiate this new SPH variant under not only the decisional Diffie-Hellman assumption, the decisional NN-th residuosity assumption and the decisional quadratic residuosity assumption as currently existing SPH constructions, but also the learning with errors (LWE) problem. Before this paper, there is a folklore that it is technically difficult to instantiate SPH under the lattice assumption (e.g., LWE). Considering quantum adversaries in the future, lattice-based SPH makes important sense

    Minicrypt Primitives with Algebraic Structure and Applications

    Get PDF
    Algebraic structure lies at the heart of much of Cryptomania as we know it. An interesting question is the following: instead of building (Cryptomania) primitives from concrete assumptions, can we build them from simple Minicrypt primitives endowed with additional algebraic structure? In this work, we affirmatively answer this question by adding algebraic structure to the following Minicrypt primitives: • One-Way Function (OWF) • Weak Unpredictable Function (wUF) • Weak Pseudorandom Function (wPRF) The algebraic structure that we consider is group homomorphism over the input/output spaces of these primitives. We also consider a “bounded” notion of homomorphism where the primitive only supports an a priori bounded number of homomorphic operations in order to capture lattice-based and other “noisy” assumptions. We show that these structured primitives can be used to construct many cryptographic protocols. In particular, we prove that: • (Bounded) Homomorphic OWFs (HOWFs) imply collision-resistant hash functions, Schnorr-style signatures, and chameleon hash functions. • (Bounded) Input-Homomorphic weak UFs (IHwUFs) imply CPA-secure PKE, non-interactive key exchange, trapdoor functions, blind batch encryption (which implies anonymous IBE, KDM-secure and leakage-resilient PKE), CCA2 deterministic PKE, and hinting PRGs (which in turn imply transformation of CPA to CCA security for ABE/1-sided PE). • (Bounded) Input-Homomorphic weak PRFs (IHwPRFs) imply PIR, lossy trapdoor functions, OT and MPC (in the plain model). In addition, we show how to realize any CDH/DDH-based protocol with certain properties in a generic manner using IHwUFs/IHwPRFs, and how to instantiate such a protocol from many concrete assumptions. We also consider primitives with substantially richer structure, namely Ring IHwPRFs and L-composable IHwPRFs. In particular, we show the following: • Ring IHwPRFs with certain properties imply FHE. • 2-composable IHwPRFs imply (black-box) IBE, and LL-composable IHwPRFs imply non-interactive (L+1)(L + 1)-party key exchange. Our framework allows us to categorize many cryptographic protocols based on which structured Minicrypt primitive implies them. In addition, it potentially makes showing the existence of many cryptosystems from novel assumptions substantially easier in the future

    Revisiting Covert Multiparty Computation

    Get PDF
    Is it feasible for parties to securely evaluate a function on their joint inputs, while hiding not only their private input, but even the very fact that they are taking part to the protocol? This intriguing question was given a positive answer in the two-party case at STOC’05, and in the general case at FOCS’07, under the name of covert multiparty computation (CMPC). A CMPC protocol allows n players with inputs (x1 ···xn) to compute a function f with the following guarantees: – If all the parties are taking part to the protocol, and if the result of the computation is favorable to all the parties, then they get to learn f(x1,··· ,xn) (and nothing more) – Else, when the result is not favorable to all the parties, or if some player does not participate to the computation, no one gets to learn anything (and in particular, no player can learn whether any of the other parties was indeed participating to the protocol) While previous works proved the existence of CMPC under standard assumptions, their candidate CMPC protocols were exclusively of theoretical interest. In this work, we revisit the design of CMPC protocols and show that, perhaps surprisingly, this very strong security notion can be achieved essentially for free. More specifically, we show how to build a CMPC protocol out of a standard, state-of-the-art MPC protocol, where both the communication and the computation are the same than the original protocol, up to an additive factor independent of the size of the circuit. Along the way, we prove two variants of the UC theorem which greatly simplify the design and the security analysis of CMPC protocols
    corecore