730 research outputs found

    Ramsey expansions of metrically homogeneous graphs

    Full text link
    We discuss the Ramsey property, the existence of a stationary independence relation and the coherent extension property for partial isometries (coherent EPPA) for all classes of metrically homogeneous graphs from Cherlin's catalogue, which is conjectured to include all such structures. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and the coherent EPPA. Our results can be seen as a new contribution to Ne\v{s}et\v{r}il's classification programme of Ramsey classes and as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion (or lift or ordering) property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a "completion algorithm" then allows us to apply several strong results in the areas that imply EPPA and respectively the Ramsey property. The main results have numerous corollaries on the automorphism groups of the Fra\"iss\'e limits of the classes, such as amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).Comment: 57 pages, 14 figures. Extends results of arXiv:1706.00295. Minor revisio

    On-line Ramsey numbers

    Get PDF
    Consider the following game between two players, Builder and Painter. Builder draws edges one at a time and Painter colours them, in either red or blue, as each appears. Builder's aim is to force Painter to draw a monochromatic copy of a fixed graph G. The minimum number of edges which Builder must draw, regardless of Painter's strategy, in order to guarantee that this happens is known as the on-line Ramsey number \tilde{r}(G) of G. Our main result, relating to the conjecture that \tilde{r}(K_t) = o(\binom{r(t)}{2}), is that there exists a constant c > 1 such that \tilde{r}(K_t) \leq c^{-t} \binom{r(t)}{2} for infinitely many values of t. We also prove a more specific upper bound for this number, showing that there exists a constant c such that \tilde{r}(K_t) \leq t^{-c \frac{\log t}{\log \log t}} 4^t. Finally, we prove a new upper bound for the on-line Ramsey number of the complete bipartite graph K_{t,t}.Comment: 11 page

    A Folkman Linear Family

    Full text link
    For graphs FF and GG, let F→(G,G)F\to (G,G) signify that any red/blue edge coloring of FF contains a monochromatic GG. Define Folkman number f(G;p)f(G;p) to be the smallest order of a graph FF such that F→(G,G)F\to (G,G) and ω(F)≤p\omega(F) \le p. It is shown that f(G;p)≤cnf(G;p)\le cn for graphs GG of order nn with Δ(G)≤Δ\Delta(G)\le \Delta, where Δ≥3\Delta\ge 3, c=c(Δ)c=c(\Delta) and p=p(Δ)p=p(\Delta) are positive constants.Comment: 11 page

    What is Ramsey-equivalent to a clique?

    Full text link
    A graph G is Ramsey for H if every two-colouring of the edges of G contains a monochromatic copy of H. Two graphs H and H' are Ramsey-equivalent if every graph G is Ramsey for H if and only if it is Ramsey for H'. In this paper, we study the problem of determining which graphs are Ramsey-equivalent to the complete graph K_k. A famous theorem of Nesetril and Rodl implies that any graph H which is Ramsey-equivalent to K_k must contain K_k. We prove that the only connected graph which is Ramsey-equivalent to K_k is itself. This gives a negative answer to the question of Szabo, Zumstein, and Zurcher on whether K_k is Ramsey-equivalent to K_k.K_2, the graph on k+1 vertices consisting of K_k with a pendent edge. In fact, we prove a stronger result. A graph G is Ramsey minimal for a graph H if it is Ramsey for H but no proper subgraph of G is Ramsey for H. Let s(H) be the smallest minimum degree over all Ramsey minimal graphs for H. The study of s(H) was introduced by Burr, Erdos, and Lovasz, where they show that s(K_k)=(k-1)^2. We prove that s(K_k.K_2)=k-1, and hence K_k and K_k.K_2 are not Ramsey-equivalent. We also address the question of which non-connected graphs are Ramsey-equivalent to K_k. Let f(k,t) be the maximum f such that the graph H=K_k+fK_t, consisting of K_k and f disjoint copies of K_t, is Ramsey-equivalent to K_k. Szabo, Zumstein, and Zurcher gave a lower bound on f(k,t). We prove an upper bound on f(k,t) which is roughly within a factor 2 of the lower bound
    • …
    corecore