44,625 research outputs found

    Reverse k Nearest Neighbor Search over Trajectories

    Full text link
    GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities, and proactively identify low coverage areas. In this paper, we study a new kind of query-Reverse k Nearest Neighbor Search over Trajectories (RkNNT), which can be used for route planning and capacity estimation. Given a set of existing routes DR, a set of passenger transitions DT, and a query route Q, a RkNNT query returns all transitions that take Q as one of its k nearest travel routes. To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are available for answering a RkNNT query. Then we introduce a filter refinement framework for processing RkNNT queries using the proposed indexes. Next, we show how to use RkNNT to solve the optimal route planning problem MaxRkNNT (MinRkNNT), which is to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of passengers based on a pre-defined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of our approaches. To the best of our best knowledge, this is the first work to study the RkNNT problem for route planning.Comment: 12 page

    Demystifying Fixed k-Nearest Neighbor Information Estimators

    Full text link
    Estimating mutual information from i.i.d. samples drawn from an unknown joint density function is a basic statistical problem of broad interest with multitudinous applications. The most popular estimator is one proposed by Kraskov and St\"ogbauer and Grassberger (KSG) in 2004, and is nonparametric and based on the distances of each sample to its kthk^{\rm th} nearest neighboring sample, where kk is a fixed small integer. Despite its widespread use (part of scientific software packages), theoretical properties of this estimator have been largely unexplored. In this paper we demonstrate that the estimator is consistent and also identify an upper bound on the rate of convergence of the bias as a function of number of samples. We argue that the superior performance benefits of the KSG estimator stems from a curious "correlation boosting" effect and build on this intuition to modify the KSG estimator in novel ways to construct a superior estimator. As a byproduct of our investigations, we obtain nearly tight rates of convergence of the 2\ell_2 error of the well known fixed kk nearest neighbor estimator of differential entropy by Kozachenko and Leonenko.Comment: 55 pages, 8 figure

    Weighted k-Nearest-Neighbor Techniques and Ordinal Classification

    Get PDF
    In the field of statistical discrimination k-nearest neighbor classification is a well-known, easy and successful method. In this paper we present an extended version of this technique, where the distances of the nearest neighbors can be taken into account. In this sense there is a close connection to LOESS, a local regression technique. In addition we show possibilities to use nearest neighbor for classification in the case of an ordinal class structure. Empirical studies show the advantages of the new techniques
    corecore