4 research outputs found

    K-margin-based Residual-Convolution-Recurrent Neural Network for Atrial Fibrillation Detection

    Full text link
    Atrial Fibrillation (AF) is an abnormal heart rhythm which can trigger cardiac arrest and sudden death. Nevertheless, its interpretation is mostly done by medical experts due to high error rates of computerized interpretation. One study found that only about 66% of AF were correctly recognized from noisy ECGs. This is in part due to insufficient training data, class skewness, as well as semantical ambiguities caused by noisy segments in an ECG record. In this paper, we propose a K-margin-based Residual-Convolution-Recurrent neural network (K-margin-based RCR-net) for AF detection from noisy ECGs. In detail, a skewness-driven dynamic augmentation method is employed to handle the problems of data inadequacy and class imbalance. A novel RCR-net is proposed to automatically extract both long-term rhythm-level and local heartbeat-level characters. Finally, we present a K-margin-based diagnosis model to automatically focus on the most important parts of an ECG record and handle noise by naturally exploiting expected consistency among the segments associated for each record. The experimental results demonstrate that the proposed method with 0.8125 F1NAOP score outperforms all state-of-the-art deep learning methods for AF detection task by 6.8%.Comment: IJCAI 201

    PyHealth: A Python Library for Health Predictive Models

    Full text link
    Despite the explosion of interest in healthcare AI research, the reproducibility and benchmarking of those research works are often limited due to the lack of standard benchmark datasets and diverse evaluation metrics. To address this reproducibility challenge, we develop PyHealth, an open-source Python toolbox for developing various predictive models on healthcare data. PyHealth consists of data preprocessing module, predictive modeling module, and evaluation module. The target users of PyHealth are both computer science researchers and healthcare data scientists. With PyHealth, they can conduct complex machine learning pipelines on healthcare datasets with fewer than ten lines of code. The data preprocessing module enables the transformation of complex healthcare datasets such as longitudinal electronic health records, medical images, continuous signals (e.g., electrocardiogram), and clinical notes into machine learning friendly formats. The predictive modeling module provides more than 30 machine learning models, including established ensemble trees and deep neural network-based approaches, via a unified but extendable API designed for both researchers and practitioners. The evaluation module provides various evaluation strategies (e.g., cross-validation and train-validation-test split) and predictive model metrics. With robustness and scalability in mind, best practices such as unit testing, continuous integration, code coverage, and interactive examples are introduced in the library's development. PyHealth can be installed through the Python Package Index (PyPI) or https://github.com/yzhao062/PyHealth

    CardioLearn: A Cloud Deep Learning Service for Cardiac Disease Detection from Electrocardiogram

    Full text link
    Electrocardiogram (ECG) is one of the most convenient and non-invasive tools for monitoring peoples' heart condition, which can use for diagnosing a wide range of heart diseases, including Cardiac Arrhythmia, Acute Coronary Syndrome, et al. However, traditional ECG disease detection models show substantial rates of misdiagnosis due to the limitations of the abilities of extracted features. Recent deep learning methods have shown significant advantages, but they do not provide publicly available services for those who have no training data or computational resources. In this paper, we demonstrate our work on building, training, and serving such out-of-the-box cloud deep learning service for cardiac disease detection from ECG named CardioLearn. The analytic ability of any other ECG recording devices can be enhanced by connecting to the Internet and invoke our open API. As a practical example, we also design a portable smart hardware device along with an interactive mobile program, which can collect ECG and detect potential cardiac diseases anytime and anywhere.Comment: WWW 2020 Dem

    Remote atrial fibrillation burden estimation using deep recurrent neural network

    Full text link
    The atrial fibrillation burden (AFB) is defined as the percentage of time spend in atrial fibrillation (AF) over a long enough monitoring period. Recent research has demonstrated the added prognosis value that becomes available by using the AFB as compared with the binary diagnosis. We evaluate, for the first time, the ability to estimate the AFB over long-term continuous recordings, using a deep recurrent neutral network (DRNN) approach. Methods: The models were developed and evaluated on a large database of p=2,891 patients, totaling t=68,800 hours of continuous electrocardiography (ECG) recordings acquired at the University of Virginia heart station. Specifically, 24h beat-to-beat time series were obtained from a single portable ECG channel. The network, denoted ArNet, was benchmarked against a gradient boosting (XGB) model, trained on 21 features including the coefficient of sample entropy (CosEn) and AFEvidence. Data were divided into training and test sets, while patients were stratified by the presence and severity of AF. The generalizations of ArNet and XGB were also evaluated on the independent test PhysioNet LTAF database. Results: the absolute AF burden estimation error |E_AF|, median and interquartile, on the test set, was 1.2 (0.1-6.7) for ArNet and 3.1 (0.0-11.7) for XGB for AF individuals. Generalization results on LTAF were consistent with E_AF of 2.6 (1.1-14.7) for ArNet and 3.6 (1.0-16.7) for XGB. Conclusion: This research demonstrates the feasibility of AFB estimation from 24h beat-to-beat interval time series utilizing recent advances in DRNN. Significance: The novel data-driven approach enables robust remote diagnosis and phenotyping of AF
    corecore