65 research outputs found

    Upstream traffic capacity of a WDM EPON under online GATE-driven scheduling

    Full text link
    Passive optical networks are increasingly used for access to the Internet and it is important to understand the performance of future long-reach, multi-channel variants. In this paper we discuss requirements on the dynamic bandwidth allocation (DBA) algorithm used to manage the upstream resource in a WDM EPON and propose a simple novel DBA algorithm that is considerably more efficient than classical approaches. We demonstrate that the algorithm emulates a multi-server polling system and derive capacity formulas that are valid for general traffic processes. We evaluate delay performance by simulation demonstrating the superiority of the proposed scheduler. The proposed scheduler offers considerable flexibility and is particularly efficient in long-reach access networks where propagation times are high

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON

    New trends on Optical Access Networks: DBAs for 10G EPON and Long-Reach PON

    Get PDF
    The access network infrastructure plays an important role in the overall performance of the network, next generation access networks (NGA) must be able to access diverse services, and should incorporate adequate architectures that include mechanisms for the integration of different technologies. New optical access technologies trends are: WDM, 10 Gb/s, and longer reach/higher splits. It is also important to take into account the evolution of the installed legacy PONs to the next generation optical access networks. The present paper goes through such topics, focusing on the research being carried out to develop dynamic bandwidth algorithms for the 10 Gb/s new EPON standard (IEEE 802.3av). We summarize results and point out issues that will require further investigation.Postprint (published version

    Investigation of the DBA Algorithm Design Space for EPONs

    Full text link

    Dynamic bandwidth allocation algorithms with non-zero laser tuning time in TWDM passive optical networks

    Get PDF
    The goal of this document is to analyse the functionality of Passive Optical Networks (PONs). The reason for focusing on these technique networks is due to their high efficiency in terms of high bandwidth, high rate, low energy consumption and low cost. PONs are composed of Optical Network Unit (ONU), Optical Line Terminal (OLT) and passive elements (splitters/combiners, optical fibres…). Specifically, this document analyses Ethernet Passive Optical Networks (EPONs) defined by Institute of Electrical and Electronics Engineers (IEEE) in the IEEE 802.3ah standard although there is another standard. The main difference between them is the framing protocol, being the EPONs compliance with Ethernet frames. The first PONs used a single optical carrier. That means that upstream channel is a shared resource and a scheduling is needed to avoid collisions between users’ transmissions, by using Time-Division Multiple Access (TDMA). In PONs the OLT plays an important paper, since it is the responsible of the dynamic bandwidth allocation (DBA). The DBA agent in the OLT has an algorithm that schedules the users’ transmissions. Since the deployment of the first PONs, the requirements of the users have increased, and users need high bandwidth and high rate. Thus, a new generation of PONs (NG-PON) have been designed. These next generation of PONs are multicarrier. That means that upstream channel that is a shared resource needs a Medium Access Protocol (MAC) based on wavelength/time-sharing known as Wavelength-Time Division Multiple Access (WTDMA). The algorithm placed on the DBA agent in the OLT increases its complexity. The algorithm should be able to schedule the transmissions based on time and wavelength. In the new generation of PON, in order to change the transmission wavelength, the ONUs have to retune their lasers. This wavelength change causes a tuning time delay. The target of this project is to design, implement and analyse an algorithm based on WTDMA and able to consider the tuning time delay and to minimize the global average delay of the system. Besides, the algorithm should apply the Just-In-Time (JIT) technique for increasing the system efficiency. All the simulations and implementations have been performed in the OPNET simulator, over a base code based on multicarrier EPON created by another student. In order to implement our algorithm a previous upgrading work has been realized for running the model and adapting it for the new requirements. We have succeeded in simulating an EPON with 4 channels where every channel has a 1 Gbps of bandwidth in OPNET simulator. In EPON we have introduced a laser tuning time control. Finally, we have implemented the designed algorithm. The algorithm schedules efficiently the network transmissions considering the laser tuning time delay. We have successfully simulated an EPON with 4 carriers, with 1 Gbps per carrier. Finally, we have implemented an algorithm able to schedule efficiently the network transmissions considering the laser tuning time delay

    Multichannel optical access networks : design and resource management

    Get PDF
    At present there is a strong worldwide push towards bringing fiber closer to individual homes and businesses. The next evolutionary step is the cost-effective all-optical integration of fiber-based access and metro networks. STARGATE [1] is an all-optical access-metro architecture which does not rely on costly active devices, e.g., Optical Cross-Connects (OXCs) or Fixed Wavelength Converters (FWCs), and allow low-cost PON technologies to follow low-cost Ethernet technologies from EPON access into metro networks, resulting in significantly reduced cost and complexity. It makes use of an overlay island of transparency with optical bypassing capabilities. In this thesis we first propose Optical Network Unit (ONU) architectures, and discuss several technical challenges, which allow STARGATE EPONs (SG-EPONs) to evolve in a pay-as-you-grow manner while providing backward compatibility with legacy infrastructure and protecting previous investment. Second, and considering all the hardware constraints, we present the corresponding dynamic bandwidth allocation algorithm for effective resource management in these networks and investigate their performances (delay, throughput) through simulation experiments. We further investigate the problem of transmission grant scheduling in multichannel optical access networks using a scheduling theoretic approach. We show that the problem can be modeled as an Open Shop and we formulate the joint scheduling and wavelength assignment problem as a Mixed Integer Linear Program (MJLP) whose objective is to reduce the length of a scheduling period. Since the problem is known to be NP-hard, we introduce a Tabu Search based heuristic for solving the joint problem. Different other heuristics are also considered and their performances are compared with those of Tabu and MILP. Results indicate that by appropriately scheduling transmission grants and assigning wavelengths, substantial and consistent improvements may be obtained in the network performance. For example, Tabu shows a reduction of up to 29% in the schedule length with substantial reduction in channel idle gaps yielding to both higher channel utilization and lower queuing delays. Additionally, when the number of channels in the network is not small, the benefits of performing appropriate wavelength assignment, together with transmission scheduling, are observed and discussed. We further perform a packet-level simulation on the considered network to study the benefits of efficient grant scheduling; significant improvements are shown both in terms of system utilization and packet queuing delays
    • …
    corecore