261 research outputs found

    An Empirical Study of the Manipulability of Single Transferable Voting

    Full text link
    Voting is a simple mechanism to combine together the preferences of multiple agents. Agents may try to manipulate the result of voting by mis-reporting their preferences. One barrier that might exist to such manipulation is computational complexity. In particular, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. In this paper, we study empirically the manipulability of single transferable voting (STV) to determine if computational complexity is really a barrier to manipulation. STV was one of the first voting rules shown to be NP-hard. It also appears one of the harder voting rules to manipulate. We sample a number of distributions of votes including uniform and real world elections. In almost every election in our experiments, it was easy to compute how a single agent could manipulate the election or to prove that manipulation by a single agent was impossible.Comment: To appear in Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010

    How Hard Is It to Control an Election by Breaking Ties?

    Full text link
    We study the computational complexity of controlling the result of an election by breaking ties strategically. This problem is equivalent to the problem of deciding the winner of an election under parallel universes tie-breaking. When the chair of the election is only asked to break ties to choose between one of the co-winners, the problem is trivially easy. However, in multi-round elections, we prove that it can be NP-hard for the chair to compute how to break ties to ensure a given result. Additionally, we show that the form of the tie-breaking function can increase the opportunities for control. Indeed, we prove that it can be NP-hard to control an election by breaking ties even with a two-stage voting rule.Comment: Revised and expanded version including longer proofs and additional result

    Detecting Possible Manipulators in Elections

    Full text link
    Manipulation is a problem of fundamental importance in the context of voting in which the voters exercise their votes strategically instead of voting honestly to prevent selection of an alternative that is less preferred. The Gibbard-Satterthwaite theorem shows that there is no strategy-proof voting rule that simultaneously satisfies certain combinations of desirable properties. Researchers have attempted to get around the impossibility results in several ways such as domain restriction and computational hardness of manipulation. However these approaches have been shown to have limitations. Since prevention of manipulation seems to be elusive, an interesting research direction therefore is detection of manipulation. Motivated by this, we initiate the study of detection of possible manipulators in an election. We formulate two pertinent computational problems - Coalitional Possible Manipulators (CPM) and Coalitional Possible Manipulators given Winner (CPMW), where a suspect group of voters is provided as input to compute whether they can be a potential coalition of possible manipulators. In the absence of any suspect group, we formulate two more computational problems namely Coalitional Possible Manipulators Search (CPMS), and Coalitional Possible Manipulators Search given Winner (CPMSW). We provide polynomial time algorithms for these problems, for several popular voting rules. For a few other voting rules, we show that these problems are in NP-complete. We observe that detecting manipulation maybe easy even when manipulation is hard, as seen for example, in the case of the Borda voting rule.Comment: Accepted in AAMAS 201
    • …
    corecore