446,212 research outputs found

    TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness

    Get PDF
    This data set contains the data accompanying the article F. Denner and B. van Wachem, TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness, Journal of Computational Physics (2015), http://dx.doi.org/10.1016/j.jcp.2015.06.008.This data set contains the data accompanying the article F. Denner and B. van Wachem, TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness, Journal of Computational Physics (2015), http://dx.doi.org/10.1016/j.jcp.2015.06.008

    Computation in Classical Mechanics

    Full text link
    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic

    A POD reduced order model for resolving angular direction in neutron/photon transport problems

    Get PDF
    publisher: Elsevier articletitle: A POD reduced order model for resolving angular direction in neutron/photon transport problems journaltitle: Journal of Computational Physics articlelink: http://dx.doi.org/10.1016/j.jcp.2015.04.043 content_type: article copyright: Copyright © 2015 Elsevier Inc. All rights reserved.publisher: Elsevier articletitle: A POD reduced order model for resolving angular direction in neutron/photon transport problems journaltitle: Journal of Computational Physics articlelink: http://dx.doi.org/10.1016/j.jcp.2015.04.043 content_type: article copyright: Copyright © 2015 Elsevier Inc. All rights reserved.publisher: Elsevier articletitle: A POD reduced order model for resolving angular direction in neutron/photon transport problems journaltitle: Journal of Computational Physics articlelink: http://dx.doi.org/10.1016/j.jcp.2015.04.043 content_type: article copyright: Copyright © 2015 Elsevier Inc. All rights reserved

    Effective Range Expansion for the Interaction Defined on the Lattice

    Full text link
    The relation between the interaction parameters for fermions on the spatial lattice and the two-body TT matrix is discussed. The presented method allows determination of the interaction parameters through the relatively simple computational scheme which include the effect of finite lattice spacing. In particular the relation between the interaction parameters and the effective range expansion parameters is derived in the limit of large lattices.Comment: Proceedings from XVI Nuclear Physics Workshop in Kazimierz Dolny, Poland. Accepted to publish in the International Journal of Modern Physics E, vol. 1

    The Pivotal Role of Causality in Local Quantum Physics

    Full text link
    In this article an attempt is made to present very recent conceptual and computational developments in QFT as new manifestations of old and well establihed physical principles. The vehicle for converting the quantum-algebraic aspects of local quantum physics into more classical geometric structures is the modular theory of Tomita. As the above named laureate to whom I have dedicated has shown together with his collaborator for the first time in sufficient generality, its use in physics goes through Einstein causality. This line of research recently gained momentum when it was realized that it is not only of structural and conceptual innovative power (see section 4), but also promises to be a new computational road into nonperturbative QFT (section 5) which, picturesquely speaking, enters the subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazi
    • …
    corecore