2 research outputs found

    A New Class of Multiple-rate Codes Based on Block Markov Superposition Transmission

    Full text link
    Hadamard transform~(HT) as over the binary field provides a natural way to implement multiple-rate codes~(referred to as {\em HT-coset codes}), where the code length N=2pN=2^p is fixed but the code dimension KK can be varied from 11 to N1N-1 by adjusting the set of frozen bits. The HT-coset codes, including Reed-Muller~(RM) codes and polar codes as typical examples, can share a pair of encoder and decoder with implementation complexity of order O(NlogN)O(N \log N). However, to guarantee that all codes with designated rates perform well, HT-coset coding usually requires a sufficiently large code length, which in turn causes difficulties in the determination of which bits are better for being frozen. In this paper, we propose to transmit short HT-coset codes in the so-called block Markov superposition transmission~(BMST) manner. At the transmitter, signals are spatially coupled via superposition, resulting in long codes. At the receiver, these coupled signals are recovered by a sliding-window iterative soft successive cancellation decoding algorithm. Most importantly, the performance around or below the bit-error-rate~(BER) of 10510^{-5} can be predicted by a simple genie-aided lower bound. Both these bounds and simulation results show that the BMST of short HT-coset codes performs well~(within one dB away from the corresponding Shannon limits) in a wide range of code rates

    Power Characterization of a Gbit/s FPGA Convolutional LDPC Decoder

    Get PDF
    In this thesis, we present an FPGA implementation of parallel-node low-density-parity-check convolutional-code (PN-LDPC-CC) encoder and decoder. A 2.4 Gbit/s rate-1/2 (3, 6) PN-LDPC-CC encoder and decoder were implemented on an Altera development and education board (DE4). Detailed power measurements of the FPGA board for various configurations of the design have been conducted to characterize the power consumption of the decoder module. For an Eb/N0 of 5 dB, the decoder with 9 processor cores (pipelined decoder iteration stages) has a bit-error-rate performance of 10E-10 and achieves an energy-per-coded-bit of 1.683 nJ based on raw power measurement results. The increase in Eb/N0 can effectively reduce the decoder power and energy-per-coded-bit for configurations with 5 or more processor cores for Eb/N0 < 5 dB. The incremental decoder power cost and incremental energy-per-coded-bit also hold a linearly decreasing trend for each additional processor core. Additional experiments are performed to account for the effect of the efficiency of the DC/DC converter circuitry on the raw power measurement data. Further experiments have also been conducted to quantify the effect of clipping thresholds, bit width for each processor core on bit-error-rate (BER) performance, power consumption, and logic utilization of the decoder. A “6Core" decoder with growing bit-width log-likelihood ratios (LLRs) has been found to have a BER performance near that of a “6Core" 6-bit decoder while consuming similar power, and logic utilization to that of a 5-bit “6Core" decoder
    corecore