2 research outputs found

    The NLMS algorithm with time-variant optimum stepsize derived from a Bayesian network perspective

    Full text link
    In this article, we derive a new stepsize adaptation for the normalized least mean square algorithm (NLMS) by describing the task of linear acoustic echo cancellation from a Bayesian network perspective. Similar to the well-known Kalman filter equations, we model the acoustic wave propagation from the loudspeaker to the microphone by a latent state vector and define a linear observation equation (to model the relation between the state vector and the observation) as well as a linear process equation (to model the temporal progress of the state vector). Based on additional assumptions on the statistics of the random variables in observation and process equation, we apply the expectation-maximization (EM) algorithm to derive an NLMS-like filter adaptation. By exploiting the conditional independence rules for Bayesian networks, we reveal that the resulting EM-NLMS algorithm has a stepsize update equivalent to the optimal-stepsize calculation proposed by Yamamoto and Kitayama in 1982, which has been adopted in many textbooks. As main difference, the instantaneous stepsize value is estimated in the M step of the EM algorithm (instead of being approximated by artificially extending the acoustic echo path). The EM-NLMS algorithm is experimentally verified for synthesized scenarios with both, white noise and male speech as input signal.Comment: 4 pages, 1 page of reference

    Marginal and simultaneous predictive classification using stratified graphical models

    Full text link
    An inductive probabilistic classification rule must generally obey the principles of Bayesian predictive inference, such that all observed and unobserved stochastic quantities are jointly modeled and the parameter uncertainty is fully acknowledged through the posterior predictive distribution. Several such rules have been recently considered and their asymptotic behavior has been characterized under the assumption that the observed features or variables used for building a classifier are conditionally independent given a simultaneous labeling of both the training samples and those from an unknown origin. Here we extend the theoretical results to predictive classifiers acknowledging feature dependencies either through graphical models or sparser alternatives defined as stratified graphical models. We also show through experimentation with both synthetic and real data that the predictive classifiers based on stratified graphical models have consistently best accuracy compared with the predictive classifiers based on either conditionally independent features or on ordinary graphical models.Comment: 18 pages, 5 figure
    corecore