3,122 research outputs found

    Joint Scheduling and Resource Allocation in CDMA Systems

    Get PDF
    Transactions on Information Theory. In this paper, the scheduling and resource allocation problem for the downlink in a CDMA-based wireless network is considered. The problem is to select a subset of the users for transmission and for each of the users selected, to choose the modulation and coding scheme, transmission power, and number of codes used. We refer to this combination as the physical layer operating point (PLOP). Each PLOP consumes different amounts of code and power resources. The resource allocation task is to pick the “optimal ” PLOP taking into account both system-wide and individual user resource constraints that can arise in a practical system. This problem is tackled as part of a utility maximization problem framed in earlier papers that includes both scheduling and resource allocation. In this setting, the problem reduces to maximizing the weighted throughput over the state-dependent downlink capacity region while taking into account the system-wide and individual user constraints. This problem is studied for the downlink of a Gaussian broadcast channel with orthogonal CDMA transmissions. This results in a tractable convex optimization problem. A dual formulation is used to obtain several key structural properties. By exploiting this structure, algorithms are developed to find the optimal solution with geometric convergence. Index Terms Cellular network, channel-aware scheduling, code division multiple access (CDMA), convex optimization, resource allocation, utility maximization. I

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Energy-Efficient Resource Allocation in Wireless Networks with Quality-of-Service Constraints

    Full text link
    A game-theoretic model is proposed to study the cross-layer problem of joint power and rate control with quality of service (QoS) constraints in multiple-access networks. In the proposed game, each user seeks to choose its transmit power and rate in a distributed manner in order to maximize its own utility while satisfying its QoS requirements. The user's QoS constraints are specified in terms of the average source rate and an upper bound on the average delay where the delay includes both transmission and queuing delays. The utility function considered here measures energy efficiency and is particularly suitable for wireless networks with energy constraints. The Nash equilibrium solution for the proposed non-cooperative game is derived and a closed-form expression for the utility achieved at equilibrium is obtained. It is shown that the QoS requirements of a user translate into a "size" for the user which is an indication of the amount of network resources consumed by the user. Using this competitive multiuser framework, the tradeoffs among throughput, delay, network capacity and energy efficiency are studied. In addition, analytical expressions are given for users' delay profiles and the delay performance of the users at Nash equilibrium is quantified.Comment: Accpeted for publication in the IEEE Transactions on Communication
    corecore