6,239 research outputs found

    Joint Multi-Cell Resource Allocation Using Pure Binary-Integer Programming for LTE Uplink

    Full text link
    Due to high system capacity requirement, 3GPP Long Term Evolution (LTE) is likely to adopt frequency reuse factor 1 at the cost of suffering severe inter-cell interference (ICI). One of combating ICI strategies is network cooperation of resource allocation (RA). For LTE uplink RA, requiring all the subcarriers to be allocated adjacently complicates the RA problem greatly. This paper investigates the joint multi-cell RA problem for LTE uplink. We model the uplink RA and ICI mitigation problem using pure binary-integer programming (BIP), with integrative consideration of all users' channel state information (CSI). The advantage of the pure BIP model is that it can be solved by branch-and-bound search (BBS) algorithm or other BIP solving algorithms, rather than resorting to exhaustive search. The system-level simulation results show that it yields 14.83% and 22.13% gains over single-cell optimal RA in average spectrum efficiency and 5th percentile of user throughput, respectively.Comment: Accepted to IEEE Vehicular Technology Conference (VTC Spring), Seoul, Korea, May, 201

    Asymptotic Close To Optimal Joint Resource Allocation and Power Control in the Uplink of Two-cell Networks

    Full text link
    In this paper, we investigate joint resource allocation and power control mechanisms for two-cell networks, where each cell has some sub-channels which should be allocated to some users. The main goal persuaded in the current work is finding the best power and sub-channel assignment strategies so that the associated sum-rate of network is maximized, while a minimum rate constraint is maintained by each user. The underlying optimization problem is a highly non-convex mixed integer and non-linear problem which does not yield a trivial solution. In this regard, to tackle the problem, using an approximate function which is quite tight at moderate to high signal to interference plus noise ratio (SINR) region, the problem is divided into two disjoint sub-channel assignment and power allocation problems. It is shown that having fixed the allocated power of each user, the subchannel assignment can be thought as a well-known assignment problem which can be effectively solved using the so-called Hungarian method. Then, the power allocation is analytically derived. Furthermore, it is shown that the power can be chosen from two extremal points of the maximum available power or the minimum power satisfying the rate constraint. Numerical results demonstrate the superiority of the proposed approach over the random selection strategy as well as the method proposed in [3] which is regarded as the best known method addressed in the literature

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog
    • …
    corecore