5,547 research outputs found

    Generalized Remote Preparation of Arbitrary mm-qubit Entangled States via Genuine Entanglements

    Get PDF
    Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary mm-qubit entangled state designed with genuine tripartite Greenberger--Horne--Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.Comment: 16 pages, 3 figures, 3 tables, Accepted to Entrop

    Controlled bidirectional remote state preparation in noisy environment: A generalized view

    Full text link
    It is shown that a realistic, controlled bidirectional remote state preparation is possible using a large class of entangled quantum states having a particular structure. Existing protocols of probabilistic, deterministic and joint remote state preparation are generalized to obtain the corresponding protocols of controlled bidirectional remote state preparation (CBRSP). A general way of incorporating the effects of two well known noise processes, the amplitude-damping and phase-damping noise, on the probabilistic CBRSP process is studied in detail by considering that noise only affects the travel qubits of the quantum channel used for the probabilistic CBRSP process. Also indicated is how to account for the effect of these noise channels on deterministic and joint remote state CBRSP protocols.Comment: 11 pages, 2 figure

    A General Method for Selecting Quantum Channel for Bidirectional Controlled State Teleportation and Other Schemes of Controlled Quantum Communication

    Full text link
    Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been proposed using nn-qubit entangled states (n∈{5,6,7}n\in\{5,6,7\}) as quantum channel. Here, we propose a general method of selecting multi-qubit (n>4)(n>4) quantum channels suitable for BCST and show that all the channels used in the existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum channels used in the existing protocols of BCST forms only a negligibly small subset of the set of all the quantum channels that can be constructed using the proposed method to implement BCST. It is also noted that all these quantum channels are also suitable for controlled bidirectional remote state preparation (CBRSP). Following the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such as controlled bidirectional joint remote state preparation (CJBRSP) and controlled quantum dialogue, are also provided.Comment: 8 pages, no figur

    Multi-party zero-error classical channel coding with entanglement

    Full text link
    We study the effects of quantum entanglement on the performance of two classical zero-error communication tasks among multiple parties. Both tasks are generalizations of the two-party zero-error channel-coding problem, where a sender and a receiver want to perfectly communicate messages through a one-way classical noisy channel. If the two parties are allowed to share entanglement, there are several positive results that show the existence of channels for which they can communicate strictly more than what they could do with classical resources. In the first task, one sender wants to communicate a common message to multiple receivers. We show that if the number of receivers is greater than a certain threshold then entanglement does not allow for an improvement in the communication for any finite number of uses of the channel. On the other hand, when the number of receivers is fixed, we exhibit a class of channels for which entanglement gives an advantage. The second problem we consider features multiple collaborating senders and one receiver. Classically, cooperation among the senders might allow them to communicate on average more messages than the sum of their individual possibilities. We show that whenever a channel allows single-sender entanglement-assisted advantage, then the gain extends also to the multi-sender case. Furthermore, we show that entanglement allows for a peculiar amplification of information which cannot happen classically, for a fixed number of uses of a channel with multiple senders.Comment: Some proofs have been modifie

    Hierarchical Joint Remote State Preparation in Noisy Environment

    Full text link
    A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver's port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state is concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued all the receivers don't possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.Comment: 24 pages, 6 figure
    • …
    corecore