800 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Signal-Aligned Network Coding in K-User MIMO Interference Channels with Limited Receiver Cooperation

    Full text link
    In this paper, we propose a signal-aligned network coding (SNC) scheme for K-user time-varying multiple-input multiple-output (MIMO) interference channels with limited receiver cooperation. We assume that the receivers are connected to a central processor via wired cooperation links with individual limited capacities. Our SNC scheme determines the precoding matrices of the transmitters so that the transmitted signals are aligned at each receiver. The aligned signals are then decoded into noiseless integer combinations of messages, also known as network-coded messages, by physical-layer network coding. The key idea of our scheme is to ensure that independent integer combinations of messages can be decoded at the receivers. Hence the central processor can recover the original messages of the transmitters by solving the linearly independent equations. We prove that our SNC scheme achieves full degrees of freedom (DoF) by utilizing signal alignment and physical-layer network coding. Simulation results show that our SNC scheme outperforms the compute-and-forward scheme in the finite SNR regime of the two-user and the three-user cases. The performance improvement of our SNC scheme mainly comes from efficient utilization of the signal subspaces for conveying independent linear equations of messages to the central processor.Comment: 12 pages, 4 figures, submitted to the IEEE Transactions on Vehicular Technolog
    • …
    corecore