3 research outputs found

    Joint Rate Selection and Wireless Network Coding for Time Critical Applications

    Full text link
    In this paper, we dynamically select the transmission rate and design wireless network coding to improve the quality of services such as delay for time critical applications. With low transmission rate, and hence longer transmission range, more packets may be encoded together, which increases the coding opportunity. However, low transmission rate may incur extra transmission delay, which is intolerable for time critical applications. We design a novel joint rate selection and wireless network coding (RSNC) scheme with delay constraint, so as to minimize the total number of packets that miss their deadlines at the destination nodes. We prove that the proposed problem is NPhard, and propose a novel graph model and transmission metric which consider both the heterogenous transmission rates and the packet deadline constraints during the graph construction. Using the graph model, we mathematically formulate the problem and design an efficient algorithm to determine the transmission rate and coding strategy for each transmission. Finally, simulation results demonstrate the superiority of the RSNC scheme.Comment: Accepted by 2012 IEEE Wireless Communications and Networking Conference (WCNC

    Error Correction for Cooperative Data Exchange

    Full text link
    This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions
    corecore