456 research outputs found

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    Achievable Throughput Optimization in OFDM Systems in the Presence of Interference and its Application to Power Line Networks

    No full text
    International audienceThe aim of this paper is to study the bit-loading and power allocation problem in the presence of interference (Inter-carrier Interference (ICI) and Inter-Symbol Interference (ISI)) in Orthogonal Frequency Division Multiplexing (OFDM) systems. ISI and ICI significantly degrade the performance of OFDM systems and make the resource management optimized without the assumption of interference less efficient. To solve this problem, an initial solution based on the greedy approach is proposed in this paper. Then, several reduced complexity approaches, which yield a little degradation compared to the initial solution, have been developed. Simulation results presented in the context of Power Line Communication (PLC) show that the performance of proposed algorithms is tight with their upper bound. Moreover, these algorithms efficiently improve the system performance as compared to the constant power water-filling allocation algorithm as well as maximum power allocation algorithm

    Guard Interval Adaptation for In-home Power Line Communication

    No full text
    International audienceThis paper aims to analyze the choice of the guard interval (GI) length in PLC systems to optimize the achievable throughput under power and symbol error-rate (SER) constraints. In general, the GI length is chosen so that there is no interference, i.e. the GI length is greater than or equal to the channel impulse response length. However, many previous works have shown that in PLC systems, this GI choice is inefficient in terms of achievable throughput. Indeed, shorter GI evidently results in inter-symbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened GI may exceed the loss caused by interference. In this paper, we propose a simple solution for the GI length adaptation in PLC systems to optimize the achievable throughput

    On the Effect of Channel Knowledge in Underwater Acoustic Communications: Estimation, Prediction and Protocol

    Get PDF
    Underwater acoustic communications are limited by the following channel impairments: time variability, narrow bandwidth, multipath, frequency selective fading and the Doppler effect. Orthogonal Frequency Division Modulation (OFDM) is recognized as an effective solution to such impairments, especially when optimally designed according to the propagation conditions. On the other hand, OFDM implementation requires accurate channel knowledge atboth transmitter and receiver sides. Long propagation delay may lead to outdated channel information. In this work, we present an adaptive OFDM scheme where channel state information is predicted through a Kalman-like filter so as to optimize communication parameters, including the cyclic prefix length. This mechanism aims to mitigate the variability of channel delay spread. This is cast in a protocol where channel estimation/prediction are jointly considered, so as to allow efficiency. The performance obtained through extensive simulations using real channels and interference show the effectiveness of the proposed scheme, both in terms of rate and reliability, at the expense of an increasing complexity. However, this solution is significantly preferable to the conventional mechanism, where channel estimation is performed only at the receiver, with channel coefficients sent back to the transmit node by means of frequent overhead signaling

    Optimized Discrete Multitone Communication Over Polymer Optical Fiber

    Get PDF
    International audienceIn this paper, we propose an overall optimization of discrete multitone (DMT) transmissions over polymer optical fiber (POF). The optimization is carried out from both a theoretical and experimental approach. At first, the parameters of the POF channel characteristics, resonant cavity light emitting diode (RC-LED) dynamic nonlinearity performance and analog-to-digital converter effective number of bits (ENOB), in our digital storage oscilloscope are measured. From the measured results, we investigate the channel capacity of a 50 m step-index POF system. Then the optimal DMT bandwidth is theoretically derived. We also optimize the system with different experimental setups. The optimal cyclic prefix length and RC-LED optimal working current are given. The ENOB can be improved by oversampling and averaging. The optimal oversampling factor is discussed. Furthermore, a joint DMT clipping and subcarrier number optimization is synthetically investigated. Based on the proposed approaches, an optimized DMT gigabit transmission over a real 50 m POF channel employing low-cost components is presented. Finally, a methodology for the practical design of the DMT transmission over POF is concluded

    Personal area technologies for internetworked services

    Get PDF
    • 

    corecore