13 research outputs found

    Optimal Bandwidth and Power Allocation for Sum Ergodic Capacity under Fading Channels in Cognitive Radio Networks

    Full text link
    This paper studies optimal bandwidth and power allocation in a cognitive radio network where multiple secondary users (SUs) share the licensed spectrum of a primary user (PU) under fading channels using the frequency division multiple access scheme. The sum ergodic capacity of all the SUs is taken as the performance metric of the network. Besides all combinations of the peak/average transmit power constraints at the SUs and the peak/average interference power constraint imposed by the PU, total bandwidth constraint of the licensed spectrum is also taken into account. Optimal bandwidth allocation is derived in closed-form for any given power allocation. The structures of optimal power allocations are also derived under all possible combinations of the aforementioned power constraints. These structures indicate the possible numbers of users that transmit at nonzero power but below their corresponding peak powers, and show that other users do not transmit or transmit at their corresponding peak power. Based on these structures, efficient algorithms are developed for finding the optimal power allocations.Comment: 28 pages, 6 figures, submitted to the IEEE Trans. Signal Processing in June 201

    Joint Bandwidth and Power Allocation with Admission Control in Wireless Multi-User Networks With and Without Relaying

    Full text link
    Equal allocation of bandwidth and/or power may not be efficient for wireless multi-user networks with limited bandwidth and power resources. Joint bandwidth and power allocation strategies for wireless multi-user networks with and without relaying are proposed in this paper for (i) the maximization of the sum capacity of all users; (ii) the maximization of the worst user capacity; and (iii) the minimization of the total power consumption of all users. It is shown that the proposed allocation problems are convex and, therefore, can be solved efficiently. Moreover, the admission control based joint bandwidth and power allocation is considered. A suboptimal greedy search algorithm is developed to solve the admission control problem efficiently. The conditions under which the greedy search is optimal are derived and shown to be mild. The performance improvements offered by the proposed joint bandwidth and power allocation are demonstrated by simulations. The advantages of the suboptimal greedy search algorithm for admission control are also shown.Comment: 30 pages, 5 figures, submitted to IEEE Trans. Signal Processing in June 201

    On the Throughput Maximization in Dencentralized Wireless Networks

    Full text link
    A distributed single-hop wireless network with KK links is considered, where the links are partitioned into a fixed number (MM) of clusters each operating in a subchannel with bandwidth WM\frac{W}{M}. The subchannels are assumed to be orthogonal to each other. A general shadow-fading model, described by parameters (α,ϖ)(\alpha,\varpi), is considered where α\alpha denotes the probability of shadowing and ϖ\varpi (ϖ1\varpi \leq 1) represents the average cross-link gains. The main goal of this paper is to find the maximum network throughput in the asymptotic regime of KK \to \infty, which is achieved by: i) proposing a distributed and non-iterative power allocation strategy, where the objective of each user is to maximize its best estimate (based on its local information, i.e., direct channel gain) of the average network throughput, and ii) choosing the optimum value for MM. In the first part of the paper, the network hroughput is defined as the \textit{average sum-rate} of the network, which is shown to scale as Θ(logK)\Theta (\log K). Moreover, it is proved that in the strong interference scenario, the optimum power allocation strategy for each user is a threshold-based on-off scheme. In the second part, the network throughput is defined as the \textit{guaranteed sum-rate}, when the outage probability approaches zero. In this scenario, it is demonstrated that the on-off power allocation scheme maximizes the throughput, which scales as WαϖlogK\frac{W}{\alpha \varpi} \log K. Moreover, the optimum spectrum sharing for maximizing the average sum-rate and the guaranteed sum-rate is achieved at M=1.Comment: Submitted to IEEE Transactions on Information Theor

    Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Get PDF
    Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams

    Joint Scheduling and Resource Allocation in CDMA Systems

    Get PDF
    Transactions on Information Theory. In this paper, the scheduling and resource allocation problem for the downlink in a CDMA-based wireless network is considered. The problem is to select a subset of the users for transmission and for each of the users selected, to choose the modulation and coding scheme, transmission power, and number of codes used. We refer to this combination as the physical layer operating point (PLOP). Each PLOP consumes different amounts of code and power resources. The resource allocation task is to pick the “optimal ” PLOP taking into account both system-wide and individual user resource constraints that can arise in a practical system. This problem is tackled as part of a utility maximization problem framed in earlier papers that includes both scheduling and resource allocation. In this setting, the problem reduces to maximizing the weighted throughput over the state-dependent downlink capacity region while taking into account the system-wide and individual user constraints. This problem is studied for the downlink of a Gaussian broadcast channel with orthogonal CDMA transmissions. This results in a tractable convex optimization problem. A dual formulation is used to obtain several key structural properties. By exploiting this structure, algorithms are developed to find the optimal solution with geometric convergence. Index Terms Cellular network, channel-aware scheduling, code division multiple access (CDMA), convex optimization, resource allocation, utility maximization. I

    Characterization of rate region and user removal in interference channels with constrained power

    Get PDF
    c○H. Mahdavidoost, 2007I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public
    corecore