4,424 research outputs found

    Joint Data compression and Computation offloading in Hierarchical Fog-Cloud Systems

    Get PDF
    Data compression has the potential to significantly improve the computation offloading performance in hierarchical fog-cloud systems. However, it remains unknown how to optimally determine the compression ratio jointly with the computation offloading decisions and the resource allocation. This joint optimization problem is studied in the current paper where we aim to minimize the maximum weighted energy and service delay cost (WEDC) of all users. First, we consider a scenario where data compression is performed only at the mobile users. We prove that the optimal offloading decisions have a threshold structure. Moreover, a novel three-step approach employing convexification techniques is developed to optimize the compression ratios and the resource allocation. Then, we address the more general design where data compression is performed at both the mobile users and the fog server. We propose three efficient algorithms to overcome the strong coupling between the offloading decisions and resource allocation. We show that the proposed optimal algorithm for data compression at only the mobile users can reduce the WEDC by a few hundred percent compared to computation offloading strategies that do not leverage data compression or use sub-optimal optimization approaches. Besides, the proposed algorithms for additional data compression at the fog server can further reduce the WEDC

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing

    Full text link
    Mobile edge computing (a.k.a. fog computing) has recently emerged to enable in-situ processing of delay-sensitive applications at the edge of mobile networks. Providing grid power supply in support of mobile edge computing, however, is costly and even infeasible (in certain rugged or under-developed areas), thus mandating on-site renewable energy as a major or even sole power supply in increasingly many scenarios. Nonetheless, the high intermittency and unpredictability of renewable energy make it very challenging to deliver a high quality of service to users in energy harvesting mobile edge computing systems. In this paper, we address the challenge of incorporating renewables into mobile edge computing and propose an efficient reinforcement learning-based resource management algorithm, which learns on-the-fly the optimal policy of dynamic workload offloading (to the centralized cloud) and edge server provisioning to minimize the long-term system cost (including both service delay and operational cost). Our online learning algorithm uses a decomposition of the (offline) value iteration and (online) reinforcement learning, thus achieving a significant improvement of learning rate and run-time performance when compared to standard reinforcement learning algorithms such as Q-learning. We prove the convergence of the proposed algorithm and analytically show that the learned policy has a simple monotone structure amenable to practical implementation. Our simulation results validate the efficacy of our algorithm, which significantly improves the edge computing performance compared to fixed or myopic optimization schemes and conventional reinforcement learning algorithms.Comment: arXiv admin note: text overlap with arXiv:1701.01090 by other author
    corecore