7 research outputs found

    Optimal storage allocation on throwboxes in Mobile Social Networks

    Get PDF
    In the context of Mobile Social Networks (MSNs), a type of wireless storage device called throwbox has emerged as a promising way to improve the efficiency of data delivery. Recent studies focus on the deployment of throwboxes to maximize data delivery opportunities. However, as a storage device, the storage usage of throwboxes has seldom been addressed by existing work. In this paper, the storage allocation of throwboxes is studied as two specific problems: (1) if throwboxes are fixed at particular places, how to allocate storage to the throwboxes; and (2) if throwboxes are deployable, how to conduct storage allocation in combination with throwbox deployment. Two optimization models are proposed to calculate the optimal storage allocation with a knowledge of the contact history of users. Real trace based simulations demonstrate that the proposed scheme is able to not only decrease data loss on throwboxes but also improve the efficiency of data delivery

    Data and Energy Integrated Communication Networks for Wireless Big Data

    Get PDF
    This paper describes a new type of communication network called data and energy integrated communication networks (DEINs), which integrates the traditionally separate two processes, i.e., wireless information transfer (WIT) and wireless energy transfer (WET), fulfilling co-transmission of data and energy. In particular, the energy transmission using radio frequency is for the purpose of energy harvesting (EH) rather than information decoding. One driving force of the advent of DEINs is wireless big data, which comes from wireless sensors that produce a large amount of small piece of data. These sensors are typically powered by battery that drains sooner or later and will have to be taken out and then replaced or recharged. EH has emerged as a technology to wirelessly charge batteries in a contactless way. Recent research work has attempted to combine WET with WIT, typically under the label of simultaneous wireless information and power transfer. Such work in the literature largely focuses on the communication side of the whole wireless networks with particular emphasis on power allocation. The DEIN communication network proposed in this paper regards the convergence of WIT and WET as a full system that considers not only the physical layer but also the higher layers, such as media access control and information routing. After describing the DEIN concept and its high-level architecture/protocol stack, this paper presents two use cases focusing on the lower layer and the higher layer of a DEIN network, respectively. The lower layer use case is about a fair resource allocation algorithm, whereas the high-layer section introduces an efficient data forwarding scheme in combination with EH. The two case studies aim to give a better explanation of the DEIN concept. Some future research directions and challenges are also pointed out

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice

    A Fog Computing Architecture for Disaster Response Networks

    Get PDF
    In the aftermath of a disaster, the impacted communication infrastructure is unable to provide first responders with a reliable medium of communication. Delay tolerant networks that leverage mobility in the area have been proposed as a scalable solution that can be deployed quickly. Such disaster response networks (DRNs) typically have limited capacity due to frequent disconnections in the network, and under-perform when saturated with data. On the other hand, there is a large amount of data being produced and consumed due to the recent popularity of smartphones and the cloud computing paradigm. Fog Computing brings the cloud computing paradigm to the complex environments that DRNs operate in. The proposed architecture addresses the key challenges of ensuring high situational awareness and energy efficiency when such DRNs are saturated with large amounts of data. Situational awareness is increased by providing data reliably, and at a high temporal and spatial resolution. A waypoint placement algorithm places hardware in the disaster struck area such that the aggregate good-put is maximized. The Raven routing framework allows for risk-averse data delivery by allowing the user to control the variance of the packet delivery delay. The Pareto frontier between performance and energy consumption is discovered, and the DRN is made to operate at these Pareto optimal points. The FuzLoc distributed protocol enables mobile self-localization in indoor environments. The architecture has been evaluated in realistic scenarios involving deployments of multiple vehicles and devices

    Joint optimization of throwbox deployment and storage allocation in Mobile Social Networks

    No full text
    In Mobile Social Networks (MSNs), data caching techniques are widely applied to enhance the performance of data delivery by using storage devices called throwboxes. A throwbox is usually placed at a particular place and acts as a stationary relay. When putting throwboxes into a network, the deployment and storage allocation of throwboxes are two fundamental problems. Although throwbox deployment has been studied, optimal storage allocation is often ignored in these approaches. In this paper, we investigate the two problems jointly. Contact strength between a user and a particular place is evaluated with the aid of the contact history of users. Moreover, a joint optimization model is established to calculate the optimal throwbox deployment and storage allocation. Simulation results show that the proposed scheme performs well in decreasing data loss incurred by storage saturation and improving the efficiency of data delivery
    corecore