370 research outputs found

    Wideband Spectrum Sensing in Cognitive Radio Networks

    Full text link
    Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

    Full text link
    In this paper, we investigate the joint spectrum sensing and resource allocation problem to maximize throughput capacity of an OFDM-based cognitive radio link with a cognitive relay. By applying a cognitive relay that uses decode and forward (D&F), we achieve more reliable communications, generating less interference (by needing less transmit power) and more diversity gain. In order to account for imperfections in spectrum sensing, the proposed schemes jointly modify energy detector thresholds and allocates transmit powers to all cognitive radio (CR) subcarriers, while simultaneously assigning subcarrier pairs for secondary users (SU) and the cognitive relay. This problem is cast as a constrained optimization problem with constraints on (1) interference introduced by the SU and the cognitive relay to the PUs; (2) miss-detection and false alarm probabilities and (3) subcarrier pairing for transmission on the SU transmitter and the cognitive relay and (4) minimum Quality of Service (QoS) for each CR subcarrier. We propose one optimal and two sub-optimal schemes all of which are compared to other schemes in the literature. Simulation results show that the proposed schemes achieve significantly higher throughput than other schemes in the literature for different relay situations.Comment: EAI Endorsed Transactions on Wireless Spectrum 14(1): e4 Published 13th Apr 201

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Analytical Studies of Fragmented-Spectrum Multi-Level OFDM-CDMA Technique in Cognitive Radio Networks

    Full text link
    In this paper, we present a multi-user resource allocation framework using fragmented-spectrum synchronous OFDM-CDMA modulation over a frequency-selective fading channel. In particular, given pre-existing communications in the spectrum where the system is operating, a channel sensing and estimation method is used to obtain information of subcarrier availability. Given this information, some real-valued multi-level orthogonal codes, which are orthogonal codes with values of {±1,±2,±3,±4,...}\{\pm1,\pm2,\pm3,\pm4, ... \}, are provided for emerging new users, i.e., cognitive radio users. Additionally, we have obtained a closed form expression for bit error rate of cognitive radio receivers in terms of detection probability of primary users, CR users' sensing time and CR users' signal to noise ratio. Moreover, simulation results obtained in this paper indicate the precision with which the analytical results have been obtained in modeling the aforementioned system.Comment: 6 pages and 3 figure
    • …
    corecore