71 research outputs found

    A Survey of Mobile Edge Computing in the Industrial Internet

    Full text link
    With the advent of a new round of the Industrial Revolution, the Industrial Internet will carry the convergence of heterogeneous network and the dynamic reconfiguration of industrial equipment. In order to further provide higher performance of network capabilities, the Industrial Internet has experienced unprecedented growth while facing enormous challenges from the actual needs of industrial networks. The typical scenarios in industrial applications, combined with the technical advantages of mobile edge computing, are described in view of the low latency, high bandwidth and high reliability demanded by the Industrial Internet in the new era. The key technologies of mobile edge computing for the Industrial Internet have been outlined in this treatise, whose feasibility and importance are demonstrated by typical industrial applications that have been deployed. As combined with the development trend of the Industrial Internet, this paper summarizes the existing work and discusses the future research direction of key technologies of mobile edge computing for the Industrial Internet.Comment: 2019 The 7th International Conference on Information, Communication and Network

    Optimal finite horizon sensing for wirelessly powered devices

    Get PDF
    We are witnessing a significant advancements in the sensor technologies which has enabled a broad spectrum of applications. Often, the resolution of the produced data by the sensors significantly affects the output quality of an application. We study a sensing resolution optimization problem for a wireless powered device (WPD) that is powered by wireless power transfer (WPT) from an access point (AP). We study a class of harvest-first-transmit-later type of WPT policy, where an access point (AP) first employs RF power to recharge the WPD in the down-link, and then, collects the data from the WPD in the up-link. The WPD optimizes the sensing resolution, WPT duration and dynamic power control in the up-link to maximize an application dependant utility at the AP. The utility of a transmitted packet is only achieved if the data is delivered successfully within a finite time. Thus, we first study a finite horizon throughput maximization problem by jointly optimizing the WPT duration and power control. We prove that the optimal WPT duration obeys a time-dependent threshold form depending on the energy state of the WPD. In the subsequent data transmission stage, the optimal transmit power allocations for the WPD is shown to posses a channel-dependent fractional structure. Then, we optimize the sensing resolution of the WPD by using a Bayesian inference based multi armed bandit problem with fast convergence property to strike a balance between the quality of the sensed data and the probability of successfully delivering it
    • …
    corecore